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Resumen

Este trabajo de tesis tiene como objetivo estudiar como un sistema luz-materia en el rgimen de
acoplamiento ultra-fuerte, denominado sistema de Rabi cuntico (QRS) mejora el proceso de gen-
eracin y transporte de excitaciones cuando este sistema es considerado como mediador. La
anarmnicidad en el espectro de energa y las reglas de seleccin de los operadores del sistema
son un elemento clave en la mejora de estos procesos. El primer resultado de esta tesis consiste
en estudiar como las caractersticas este sistema permiten implementar un protocolo para trans-
ferir excitaciones y estados cunticos aun cuando el sistema mediador (QRS) no posee coherencia
cuntica. El segundo resultado consiste en estudiar como este sistema de Rabi acta como medi-
ador en la generacin de estados fotnicos correlacionados y no correlacionados en cavidades de
microondas. Aqu, la interaccin dispersiva entre las cavidades y el sistema mediador es posible
obtener procesos de generacin paramtrica. Dependiendo del nmero de cavidades, los estados
generados pueden ser no correlacionados o correlacionados. Adems, el tiempo de generacin de
estos estados es inversamente proporcional al nmero de cavidades en el sistema. En ambos
trabajos, se ha estudiado la dinmica del sistema fsico considerando parmetros experimentales
consistentes con la plataforma de circuitos superconductores.

Keywords: Superconductividad, Circuitos Superconductores, Interacción Luz-Materia, Régimen
de acoplamiento ultra fuerte.
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Abstract

In this thesis, we addressed how a light-matter system in the ultra-strong coupling regime, termed
as quantum Rabi system (QRS) improving the generation and the transport of excitation when this
system is considered as a mediator. The anharmonicity of the energy spectrum and the selection
rules of the system operators are a crucial element in these tasks. The first problem of this thesis
concern with the development of a protocol to perform quantum state transfer between two-level
systems even though the mediator (QRS) does not have quantum coherence. The second result
concerns the generation of uncorrelated and correlated photonic quantum states in microwave
cavities. Here, the dispersive interaction among the QRS and the cavities allow generating para-
metric process. Depending on the number of cavities this process permits to create uncorrelated
or correlated copies of quantum states. Furthermore, the generation time of these states is in-
verse proportional to the number of cavities on the system. In both problems, we have studied
the dynamics of the physical system with the environment considering consistent experimental
parameters with near-term superconducting circuit technologies.

Keywords: Superconductivity, Superconducting Circuit, Light-Matter Interaction, Ultrastrong
Coupling Regime.
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Introduction

Quantum mechanics has radically changed our understanding of the physical phenomena at the

fundamental scale. One of the most crucial aspects of this theory is that it forces us to recklessness

concepts firmly rooted in our intuition as determinism and localization. In fact, concepts such

as the quantum uncertainty [Hei27] and non-local properties as entanglement have a profound

impact on the way we observe and understand the world. For this reason, the main feature of

quantum mechanics is the capability to predict physical phenomena impossible to be described

with classical theory. For instance, for an experiment involving atomic systems interacting with

an external magnetic field as in the Stern-Gerlach (SG) experiment [GS89], the classical theory

is not able to explain the preferential direction of deviation of the atomic particles observed in

the experiment. Quantum mechanics thoroughly describes the experimental observations. Here,

the physical systems can have discrete degrees of freedom. Therefore, the number of possible

outcomes on the system is also discrete (In the SG experiment, the atomic particle can deviate

upwards or downwards). Another exciting effect observed in this experiment is the impossibility to

know a priori which will be the final state of the system. To know the final state of the system it is

necessary to perform a measurement, that is, perturb the system. This fact shows that the possible

outcomes on a quantum system are probabilistic instead of deterministic. In the SG experiment,

the deviation probability of the atomic particle is equal to P = 1/2 (upwards and downwards). The

following feature also shows that in a quantum system the possible outcomes are superposed.

This phenomenon is known as the superposition principle and has been used to develop protocols

within the information processing realm [Gro96; DJ92].

On the other hand, the development of a complete description about how light interacts with

matter at the quantum level became an important achievement for this theory. The first step to de-

velop the theory of light-matter interaction was done by P. Dirac and E. Fermi in the decade of the

1920 [Dir27; Fer32] with the development of quantum electrodynamics [Fey06]. In such case, light

and matter interact via the minimal coupling in the Coulomb gauge [SZ97]. This coupling consid-
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ers that light (either classical or quantum) coming from an external source interacts with an atom

in the far wavelength limit [GAF10]. In this limit, the electromagnetic field only depends on the rel-

ative position of the atom and time. For the case where the light source is classical, and the atom

is quantum (discrete energy levels), the model describing the light-matter interaction corresponds

to the Rabi model [Rab37], obtained by applying perturbation theory to the minimal coupling and

considering the dipole approximation [SZ97]. Differently, when the system is completely quantum

(field source and the atom), the model describing the light-matter interaction corresponds to the

quantum Rabi model [Rab36; Bra11]. In earlier quantum mechanics, this model was not solvable,

and it had to be approximated using the rotating wave approximation [WY07], within this approx-

imation, the Rabi model becomes the Jaynes-Cummings model [JC63; SK93; GKL13; Sho07;

KM80]. The Jaynes-Cumming model has the property that the number of excitations on the sys-

tem is a conserved quantity. Therefore, the model diagonalize in an effective 2× 2 basis involving

N excitations distributed either in the atom or the field mode. On the other hand, extensions of the

light-matter interaction model beyond one atom have also been studied. We highlight two models

involving multi-atom systems: the Dicke model [Dic54; Gar11] and the Tavis-Cummings model

[TC68; TC69], which correspond to generalizations of the quantum Rabi model and the Jaynes-

Cumming model for a set of N atoms interacting with a quantized electromagnetic field mode,

respectively. Single and multi-atom models were implemented in quantum platforms as trapped

ions [RSR07; Gut+01], and cavity quantum electrodynamics in both optical and microwave domain

[Bru+87; SEW91; Bru+92; RBH01].

Given the proper nature of the quantum mechanics, one of the most important technological

challenges is the construction of physical systems isolated from the environment. This can be

accomplished by considering two different approaches: isolating natural systems or building arti-

ficial (hand-made) systems [Lan13; Sch07; Bis10; Bla+04]. The first approach considers physical

systems which are already existing in nature, and by applying quantum engineering try to isolate

specific degrees of freedom from the environment, as observed in experiments with confined pho-

tons into high-quality cavities, or trapped ions inside Paul traps, among others quantum platforms.

The main disadvantage of this approach lies in the impossibility to perform quantum engineering

on the system parameters as, for example, coupling strengths and energy gaps of two-level sys-

tems. The second alternative takes advantages of tailor-made physical systems whose behavior

mimic the one of natural quantum systems. In this way, the technological progress to fabricate

and design devices with quantum internal degrees of freedom has extensively grown the last three

decades. A remarkable platforms are superconducting circuits, circuit quantum electrodynam-
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ics [SG08; YN11; HTK12; DS13; Lan13; Sch07; Bis10; Bla+04], and lately microwave quantum

photonics [Nak12; HJ+16; Gu+17]. In these platforms, the fundamental systems are constituted

of electronic circuits whose natural frequencies are in the microwave regime. Artificial atoms

[Dev+98; Koc+07; Orl+99; Wal+00; Yan+16] have been implemented in Josephson junction-based

circuits. The Josephson junction is modeled by the RCL model [Tin04] i.e., as a capacitance con-

nected in series with a non-linear inductor. This non-linear element introduces anharmonicity on

the energy spectrum of the circuit, emulating the energy spectrum of an atomic system as the

Hydrogen atom. Moreover, single and multi-mode microwave cavities have been implemented

by using LC circuit, and in distributed circuit element as the strip-line and coplanar waveguide

resonator [Sim04; Göp+08]. Advances on lithography techniques have permitted to build artifi-

cial atoms with dipole moment larger than the observed in alkaline and Rydberg atoms [TRK92;

Bla+04]. Furthermore, it is also possible to build transmission line resonators whose vacuum Rabi

splitting to be a least one hundred times larger than the one observed in 3D microwave cavities on

cavity quantum electrodynamics [RBH01]. Also, it is possible to couple resonators through non-

linear inductors. The coupling strength achieved in this setup has made possible to study effects

not observed in atomic systems, for instance, it has been possible to observed enhanced Self

and Cross Kerr effects between resonators [Ber+10; BGB10; Eic+11; Bou+12; Har+12]. Likewise,

these fabrication techniques have also allowed to build both artificial atoms and photons sources

with increasingly large coherence times [OW13; SSS17]. The combination of these improvements

have allowed studying the light-matter interaction in electrical circuits.

The light-matter interaction between electrical circuits has been implemented using the charge

and flux qubit. In both cases, the artificial atom is coupled to a transmission line resonator and

the nature of light-matter interaction may change depending on the type of artificial atom. In

fact, for charge or transmon qubit, the light-matter coupling is obtained via capacitive coupling

[Bla+04; YTN03], whereas the light-matter coupling that involves a flux qubit is implemented either

via mutual inductance [Izm+04; Plo+07; All+10] or galvanic coupling [YN03; NWF04]. Notice that

these kinds of couplings are analog to the electric and magnetic dipole coupling in atomic systems,

respectively [Gu+17]. Besides, the technological progress on material science and fabrication

techniques have also made possible to achieved light-matter regimes that are not possible to

obtain in standard quantum optics setups. We refer to as the ultra-strong coupling (USC) [CBC05;

FD+16b; CC06; FD+10; AN10; Bau+16; Nie+10; BA17; Bos+17], and Deep strong coupling (DSC)

regime [Cas+10a; Yos+16]. In these regimes, the ratio between the light-matter coupling becomes

comparable to (USC) or larger than (DSC) the bare frequencies of the system components. As
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a result, the rotating wave approximation breaks down, and the simplest model describing the

light-matter interaction is the quantum Rabi model [Rab36; Bra11]. This model presents a discrete

symmetry known as parity Z2. In such a case, the energy levels present specific selection rules for

state transitions. These selection rules have been reported to be useful for performing quantum

information processing and quantum simulations [NC11; Rom+12; Kya+15b; Kya+15a; Wan+16;

AA+18].

In this thesis, by using the properties exhibited by light-matter systems in the ultra-strong

coupling regime, termed as QRS, as anharmonic energy spectrum and internal selection rules,

together with dispersive coupling between the system components, we address the problem of

transport of energy. The first result obtained in this thesis concerns the high-fidelity quantum state

transfer mediated by the QRS initialize in a thermal state. We demonstrate high-fidelity swap oper-

ations between qubits even though the quantum bus is thermally populated. . We discuss a pos-

sible physical implementation in a realistic circuit QED scheme that leads to the multimode Dicke

model. The second result concerns the generation and transport of quantum copies of microwave

photons. Our method considers two-photon processes that take place in a system composed of

two extended cavities and an ultrastrongly coupled light-matter system. Under specific resonance

conditions our method generates, in a deterministic manner, product states of uncorrelated photon

pairs, Bell states, and W states. We demonstrate improved generation times when increasing the

number of multi-mode cavities, and prove the generation of genuine multipartite-entangled states

when coupling an ancillary system to each cavity.
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Chapter 1

The Phenomenon of

superconductivity

Superconductivity phenomenon was discovered in 1911 by Onnes [KO11]. Onnes observed the

disappearance of the electrical resistance in metals such as mercury, lead, and tin when they are

cooled down at a temperature below to their critical temperature. This temperature is character-

istic of the metal [Tin04]. Another essential phenomenon observed in a superconductor is the

emergence of a persistent current. It has been observed that this current may flow on the super-

conductor without decreasing in the time. In fact, it has been shown that the lifetime of this current

is about 105 years [Tin04]. Both phenomena are usually known as the perfect conductivity.

Another critical phenomenon observed in a superconductor is the perfect diamagnetism or

Meissner effect, discovered in 1933 by Meissner and Ochsenfeld [MO33]. The Meissner effect

is related to the behavior of the magnetic field on the superconductor. As metal is cooled until

its critical temperature, the magnetic field on the metal is expelled from the superconductor, and

it is confined in the superconductor surface. Fritz and Heinz London studied both phenomena,

perfect conductivity and perfect diamagnetism in 1935 [Rso]. They proposed a set of equations to

describe the microscopic electromagnetic field on the superconductor. These equations are given

by

~E =
4πλ2

c2
∂ ~Js
∂t

(1.1)

~h = −4πλ2

c

(
∇× ~Js

)
, (1.2)
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where c is the speed of light, and λ is the penetration depth of the superconductor. The penetration

depth is a phenomenological parameter which quantifies how deep the magnetic field penetrates

into the superconductor [Tin04]. Furthermore ~Js is the current density of the superconductor. Fi-

nally, ~h is the microscopic magnetic field whose average corresponds to the macroscopic magnetic

field ~B. The Eq. (1.1) is related to the perfect conductivity. As the electric field is proportional to the

derivative of the current density, any electric field on the superconductor accelerates the charge

inducing a current. The Eq. (1.2) is associated with the perfect diamagnetism. Replacing the Eq.

(1.2) in the Maxwell-Faraday equation i.e., ∇ × ~h = 4π ~Js/c we obtain the equation ∇2~h = ~h/λ.

The solution of this equation corresponds to a microscopic magnetic field which exponentially de-

creases as the deep of the superconductor increases. Thus, the London equations provide a set

of the equation which explains how a superconductor works.

Another step towards the understanding of the physics behind superconductivity is the devel-

opment of the Bardeen-Cooper-Schrieffer (BCS) theory. The BCS theory was developed by J.

Bardeen, L. N. Cooper, and J. R. Schrieffer at the end of the decade of 1950 [BCS57]. This

theory explains how a metal suffers a phase-transition from a conductor to a superconductor.

The phase transition occurs when a pair of electrons above the Fermi energy couple to each

other due to an effective, attractive interaction produced by the virtual exchange of phonons in the

metal. The superconductivity appears when the attractive interaction dominates over the repulsive

Coulomb interaction. As a result, both electrons correlate yielding to a bosonic quantum state

known as Cooper pair. Furthermore, the BCS theory shows that there is a minimum of energy

Eg = 3.528kBTc required to break a Cooper pair and create two uncoupled electrons depends

on the metal temperature. This prediction provides one of the most evident verification of the

microscopic theory of superconductors.

Other important results in superconductivity theory were obtained through the Ginzburg-landau

theory in 1950 [Gin50]. The main idea in this theory is to associate the macroscopic wave function

describing the superconductor as an order parameter in the second order phase transition. This

order parameter is related with the macroscopic electron density and macroscopic phase by the

relation ψ(~r, t) =
√
ns(~r, t)e

iθ(~r,t). With this order parameter, it is possible to write the free energy

of the superconductor. Variational principle over this energy leads to a set of differential equa-

tions describing the superconductor. Unlike London equations, the Ginzburg-Landau theory could

predict the non-linear effects on the electron density arising from the interaction with an external

electromagnetic field. Even though the Ginzburg-Landau theory was initially constructed empiri-

cally, Gor’kov in 1959 [Gor59] demonstrates that the Ginzburg-Landau theory is a particular case

6



|Ψ|
Figure 1.1: Ginzburg-Landau potential Given in Eq. (1.3), blue continuous line correspond to the
free energy where α > 0, this situation corresponds to a normal metal. The orange dashed line
corresponds to the free energy where α < 0. For this condition, the free energy looks like a double
well potential with two stables minima.

of the BCS theory, making both theories complementary to each other.

This thesis chapter address fundamental results obtained on superconductivity theory at the

macroscopic level using the Ginzburg-Landau theory. Based on this theory, we highlight two crucial

results, that is, the quantization of the magnetic flux on a superconducting loop, and the Josephson

effect on two weakly coupled superconductors.

1.1 The Ginzburg––Landau theory

The transition from metal to superconductor in the absence of external magnetic field at critical

temperature Tc corresponds to a second-order phase transition [Cyr73]. The Landau-Lifshitz the-

ory [LLP80] enunciates that there is an order parameter which must be zero after the transition, and

finite before the phase transition. For superconductivity, the order parameter corresponds to the

macroscopic complex wave function Ψ whose modulus is the Cooper pair density ns(~r) = |Ψ(~r)|2.

Near to the critical temperature where the phase transition may occur, the GL theory assumes that

the free energy of the superconductor can be written as follows

7



Fs = Fn + α|Ψ|2 +
β

2
|Ψ|4, (1.3)

where Fn is the free energy of the metal in its normal state. This assumption is valid for a tem-

perature range close to the critical temperature Tc. Notice that the free energy only contains even

powers in ψ, this is due to the wave-function is complex and all the powers odd involves non-

physical quantities (purely imaginary numbers). To obtain a bounded energy, it is required that

β > 0. Besides, by fixing the sign of β, two conditions for the α parameter arises

• If α ≥ 0 the free energy Fs has a single minimum at ψ = 0, which corresponds to a normal

metal state (see Fig. (1.1)).

• If α < 0 the free energy Fs behaves as a double-well potential with two stables minimum at

ψ = ±
√
−α/2β (see Fig. (1.1)).

Now, let us consider the contribution to the free energy Fs done by the presence of an external

magnetic field Ha on the superconductor. In such case, we write the free energy as

Fs = Fn + α|Ψ|2 +
β

2
|Ψ|4 +

1

2m

∣∣∣∣(− i~∇− 2e ~A

c

)
Ψ

∣∣∣∣2 +
H2
a

8π
(1.4)

The minimal action principle over ψ and ~A lead to the following differential equations

αΨ + βΨ|Ψ|2 +
1

2m

(
− i~∇− 2e ~A

c

)2

Ψ = 0 (1.5)

(∇2 ~A−∇(∇ · ~A))−∇×Ha

4π
=

e~
imc

(Ψ∗∇Ψ−Ψ∇Ψ∗)− 4e2

mc2
~A|Ψ|2. (1.6)

The right hand of the Eq. (1.6) can be written in terms of the Noether current

~J =
e~
imc

(ψ∗∇ψ − ψ∇ψ∗)− 4e2

mc2
~A|ψ|2. (1.7)

These equations have the following boundary conditions

(−i~∇− 2e

c
~A)Ψ · ~s = 0 (1.8)

∇× ~A = Ha. (1.9)

Where ~s is a vector normal to the superconducting surface. Thus, to obtain the physical description

of a superconductor, it is necessary to solve the differential equations with the boundary conditions.

Now by considering that the wavefunction has the following form Ψ =
√
ns(~r)e

iθ(~r) we show that
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the current density of the Cooper pair can be expressed in term of the spatial variation to the

superconducting phase, replacing the expression of the wave-function into Eq. (1.7) the current

density reads

~J =
2e

mc

(
~∇θ − 2e

c
~A

)
ns(~r). (1.10)

With the expression for the current density previously obtained, it is possible to demonstrate that

the magnetic flux enclosed in a superconducting loop is quantized. Let us consider region formed

by a superconducting loop surrounded by a non-superconducting region. Afterward, we compute

the integral of the current density as follows

∮
C

~J · d~l =

∮
C

2ens
mc

(
~∇θ − 2e

c
~A

)
· d~l, (1.11)

where C is the integration path which considers a curve inside of the superconductor. Due to

current is flowing on the superconductor surface. The integral in Eq. (1.11) is zero, implying

∮
C

~∇θ · d~l =

∮
2e

c
~A · d~l, (1.12)

The left term on Eq. (1.12) Corresponds to the integral of the gradient of the superconducting

phase. Therefore, the result of the integral corresponding to the phase evaluated at the edges of

the curve, that is,

∮
C

~∇θ · d~l = ~ lim
~r1→~r2

(
θ(~r2)− θ(~r1)

)
= 2~πn. (1.13)

The right hand of the Eq. (1.12) can be solved by considering the Stokes’ theorem. Thus, the write

the line integral as a surface integral

∮
2e

c
~A · d~l =

2e

c

∫
∂C

(∇× ~A) · d~S. (1.14)

Here, ∂C is the surface formed by the curve C and d~S is a infinitesimal surface vector normal to

the direction of (∇ × ~A). The expression (∇ × ~A) = ~B is simply the external magnetic field. By

replacing on the Eq. (1.11) we obtain

2e

c

∫
∂C

(∇× ~A) · d~S =
2e

c

∫
∂C

~B · d~S =
2e

c
ΦB , (1.15)
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Superconductor SuperconductorBarrier

ΨΨ
Ψ

Figure 1.2: Josephson effect. Schematic representation of the Josephson effect. Two pieces
of superconductors are coupled to a thin insulator barrier. The quantum tunneling of Cooper
pair between superconductors is produced by the overlap of the wavefunction describing each
superconductor.

where ΦB is the external magnetic flux. Thus, by replacing the results of the integrals obtained in

the Eq. (1.13) and Eq. (1.15) the fluxoid quantization relation arrives (c = 1)

2~πn = 2eΦB → ΦB =
h

2e
n = nφ0. (1.16)

Here, φ0 is the flux quantum φ0 = h/2e. Experimental proof of this effect was observed in 1960 by

R. Doll and co-authors [DN61] and B. S. Deaver and co-authors [DF61].

1.2 The Josephson effect in superconductors

The Josephson effect is a phenomenon in which a supercurrent appears as the result of the

quantum tunneling of Cooper pair in an interface formed by two superconductors coupled through a

thin insulator barrier as shown Fig. (1.2) (this interface is known as Josephson junction) discovered

by Brian Josephson in 1962 [Jos62] and experimentally observed by Anderson and co-authors in

1963 [AR63]. To describe this effect we need to consider that each superconductor is described

by a macroscopic wave function given by Ψk(~r) =
√
ns,k(~r)eiθk(~r) with k = 1, 2. Besides, we are

assuming Cooper pair density is the same at edges and the bulk. Also, we assume that the length

of each superconductor is smaller than its respective coherent length (L � ξ). These conditions

impose the following constrain the wave function describing the interface superconductor-insulator

10



superconductor.

Ψ(x) =
√
ns(~r)e

iθ1(~r)g(x) +
√
ns(~r)e

iθ2(~r)(1− g(x)), (1.17)

Notice that Ψ(x) must satisfy the following conditions

Ψ(x→ 0)→ Ψ1, Ψ(x→ L)→ Ψ2, (1.18)

The next step is to consider the first GL differential equation given in Eq. (1.5) without electromag-

netic field and replace the wave function Ψ

− ~2

2m

∂2Ψ

∂x2
+ αΨ + β|Ψ|2Ψ = 0 (1.19)

Introducing the variables Ψ(x) = |Ψ∞|f(x), where |Ψ∞|2 = −α/β, and ξ2 = ~2/2m|α|, the differ-

ential equations becomes

ξ2f ′′ + f − |f |2f = 0 (1.20)

To solve this differential equation, we consider that the terms f and f3 are smaller than ξ2f ′′

because this term is proportional to (ξ/L)2f � {f, f3}. Thus, the differential equation becomes in

f ′′ = 0→ f(x) = c1 + c2x, (1.21)

By applying the constrains given in Eq. (1.18), the wave function is given by

Ψ(x) =
√
ns(~r)

[
eiθ1
(

1− x

L

)
+ eiθ2

x

L

]
. (1.22)

The current density is obtained by replacing the wavefunction Ψ(x) into the Eq. (1.7) without

electromagnetic field

| ~J | = e~
mc

ns
L

sin(θ2 − θ1). (1.23)

The current is obtained by integrating the current density over the junction area

I = Ic sin(θ2 − θ1), (1.24)
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where Ic = e~nsA/mL is the persistent current on the Josephson junction. Integrating the free

energy given in Eq. ((1.4) in the absence of electromagnetic field we obtain the free energy of the

Josephson junction (Fs = 0)

EJ =

∫ L

0

[
α|Ψ|2 +

β

2
|Ψ|4 − ~2

2m
|∇Ψ|2

]
. (1.25)

In the limit (ξ/L � 1) the only contributing term correspond to the gradient ∇Ψ [Tin04]. In such a

case, we write the energy as

EJ =
φ0Ic
2π

[
1− cos(θ2 − θ1)

]
. (1.26)

Thus, the energy on the Josephson junction depends on the quantum flux, the persistent current,

and the phase difference on the junction.
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Chapter 2

Superconducting circuits

2.1 Macroscopic quantum mechanics

Superconducting quantum circuits [SG08; YN11; HTK12; DS13] consists into integrated devices

whose size is larger than atomic systems (a conventional superconducting chip can size tens

millimetres), but smaller than its respective operating wavelength. Hence, it is said that these

devices operate within the lumped element description. In this case, both voltage and current on

the circuit element do not vary with the position. As consequence, the circuit are considered as

ideal (without resistance).

Superconducting circuits platform involves mainly two kinds of devices, i.e., non-linear circuits

composed by Josephson junctions behaving as multilevel atoms, and LC circuits, strip-lines res-

onators and transmission line resonators working as microwave cavities. The main feature exhib-

ited by superconducting circuits is the nature of its internal degrees of freedom. Unlike of circuit

working at room temperature, where its internal degrees of freedom as current and voltage corre-

spond to classical variables. The degrees of freedom on superconducting correspond to discrete

variables. In fact, in some artificial atoms, the degrees of freedom correspond to an excess of

Cooper pair in a superconducting island, or persistent current flowing on a superconducting loop.

The main feature exhibited by superconducting circuits is the nature of its internal degrees of free-

dom. Therefore, it seems to be that the quantum nature of the degrees of freedom on the circuit

is related with the temperature at which the circuit is cooled down. Here we address the question

concerning with what does condition must satisfy a device for its internal degrees of freedom being

considered as quantum variables? For electronic devices, the conditions to satisfies are (a) the

13



ultra-low temperature condition, and (b) the ultra-low dissipation condition, respectively.

The ultra-low temperature condition (a) is referred to the relationship among the operational

circuit energy denoted as ~ω, with ω with being the operational frequency of the circuit, and the

thermal energy on the circuit i.e., kBT , where kB is the Boltzmann constant, and T is the circuit

temperature. Formally, a circuit variable could be treated as a quantum degree of freedom when

the condition ~ω � kBT is fulfilled. Notice that this condition is not sufficient to treat a circuit

variable as a quantum degree of freedom [Dev97; UM17]. Likewise, to treat the variables of

a circuit as a quantum variable, the circuit also must satisfy the ultra-slow dissipation condition

(b). This condition alludes to the relationship among the linewidth and the separation between

each energy levels of the circuit. In the circuit, the spectral lines of the energy levels are not

sharp because the energy levels have a finite lifetime. In fact, the linewidth of the spectral lines

is proportional to 1/τ , with τ being the lifetime of the energy level. Thus, for energy levels with

large linewidth (short lifetime), this energy levels could overlap. Therefore, the distinguishability of

each energy levels is lost. This condition imposes that the variables on the circuit will be treated

as quantum degree of freedom if the quality factor of the circuit Q� 1.

For example, let us consider a LC circuit whose parameters are given by C = 10 pF, and

L = 1 nH [Dev97; UM17]. The resonance frequency of this LC circuit is ω = 2π × 1.59 GHz. This

energy corresponds to an effective Temperature of T ≈ 76 mK. Hence, if the circuit is cooled

down at temperature below of this T the ultra-low temperature condition is satisfied. In typical

superconducting circuits the operational temperature is around of To = 20− 30 mK [SG08; YN11;

HTK12; DS13]. On the other hand, the quality factor of the LC circuit connected in series is given

by Q = (1/R)
√
L/C, with R being the effective resistance of the circuit. The ultra-slow dissipation

condition is fulfilled when Q� 1.

2.2 Fundamentals of circuit theory

We consider an electrical circuit or network as a set of two-terminal elements and a set of nodes

which are interconnected. We also identify each two-terminal element with a unique node, and

every node is identified with at least one element terminal as shown in Fig. (2.1). The two-

port elements are constituted by resistors, capacitors, inductors and Josephson junctions, and

the nodes correspond to the point where these two-port elements meet, we denote the nodes as

black dots. Another significant element on an electric circuit is the loop. The loop is defined as a

closed path on the network which starts at a node, called n, passing through a set of nodes on
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Figure 2.1: Basic element on an electric circuit. (a) The electronic circuit formed by two-port
elements as resistors (R), inductors (L) and capacitors (C). The black dots represent the nodes on
the network, whereas the red arrows stand for the current flowing on the circuit. (b) The spanning
tree on the circuit. Continuous lines correspond to the twigs of the spanning tree, whereas, the
dashed lines correspond to the link branches. (c) Schematic illustration for the current-voltage sign
orientation for a circuit element placed at branch b.

the network and return to the initial node. In the circuit depicted in Fig. (2.1) the loop is formed

by the set of nodes {1, 4, 5}. Further, we also define a tree or spanning tree of the network.

The spanning tree is defined as a connected sub-network which contains all the nodes, but its

branches (two-port element) do not form a loop, the tree is specified by enumerating its branches.

The branches describing tree are called twigs denoted as T , otherwise, are named links, denoted

as T̄ . For instance, for the depicted network, a possible spanning tree is formed by the elements

T = {R4, R5} (blue continuous line), and the link are formed by T̄ = {R2, R3, L1, R1} (blue dashed

line).

A passive circuit element corresponds to a two-terminal device such that we can write the

current I(t) and voltage V (t) in the following form

V (t) = f(I, İ); I(t) = g(V, V̇ ). (2.1)

Where İ and V̇ are the derivatives with respect to the time, for the current and voltage, respectively.

These equations are known as the element equation [Naj10]. If these relations can be expressed

as I = g(V ) or V = f(I), the element is to be said resistive. Otherwise, the circuit elements are

to be said dynamical. Depending on the element equation Eq. (2.1), we can identify the basic

component in the electrical circuit, i.e., the resistor, the capacitor and the inductor [Naj10]. An

element is said to be a resistor if this element equation is given by the Ohm’s law V = RI with R

beings the resistance or I = GV with G beings the conductance. The capacitor is a passive circuit
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element such that the electrical charge q(t) is a function of the voltage, i.e., q(t) = CV (t), with C

as the capacitance. Besides, the current on this device is I(t) = dq/dt. Finally, an inductor is a

passive element such that we can relate the current with the magnetic field through the relation

ϕ(t) = LI(t), where L is the inductance of the device. Furthermore, the voltage on the inductor is

V (t) = LdI/dt. We refer to an active circuit element as a device where either voltage and current

coming from external sources.

The orientation of both current and voltage on the circuit are chosen in the following way: for

the branch bk the current ibk is positive if it flows from ea(k) to the node eb(k), where e are the node

where the two-port element is connected. Otherwise, the current is negative. On the other hand,

the voltage dropped on the branch vk is considered positive if the electric potential is higher at

node ea(k) than the node eb(k), as shown in Fig. (2.1)(c).

As we are interested in obtaining the Lagrangian and Hamiltonian of an electrical circuit, we

need to compute the energy associated to each circuit element. The total energy absorbed by a

circuit element on the branch b is given by

Eb(t) =

∫ t

−∞
dt′vb(t

′)ib(t
′) (2.2)

Notice that the limit t = −∞ assumes that at this time the circuit is switched-off, or equivalently,

there is no electromagnetic field on the circuit. For the passive circuit element previously de-

scribed, the total energy absorbed is given by

EC(t) =
Cv2

b (t)

2
, EI(t) =

Li2b(t)

2
, EJ(t) = EJ cos

(
Φb
φ0

)
(2.3)

where, vb(t), ib(t), and Φb are the voltage dropped, the current flowing and the flux on the branch

b, respectively.

2.3 Quantum description of superconducting circuits

To obtain the Lagrangian of any physical system, we need to fix a set of generalized coordinates,

and with them compute the energy of each circuit element. In superconducting circuits, these

coordinates correspond to the flux and the charge on the branch b, related to the voltage and the
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Figure 2.2: The spanning tree method. (a) Representation of an electrical circuit. Black dots
correspond to the node on the network, the ground node is denoted as ϕg. Red line correspond to
a chosen spanning tree which consider all the branches start from the ground node that does not
form any loop. Blue line correspond to the branches that closing loop. Green arrows stand for the
current on the circuit. The fluxes labeled with letters correspond to the fluxes describing each box.
(b) Same representation of the electrical circuit than in (a), but with the difference that the fluxes
describing the network are the node fluxes.

current on the respective branch [Dev97; UM17]

Qb =

∫ t

−∞
ib(t
′)dt′, Φb =

∫ t

−∞
vb(t

′)dt′. (2.4)

Regarding these generalized coordinates the energy terms given in Eq. (2.3) are rewritten regard-

ing these coordinates

EC(t) =
Q2
b(t)

2C
, EI(t) =

Φ2
b(t)

2L
, EJ(t) = EJ cos

(
Φb
φ0

)
, (2.5)

The next step is to consider that the Kirchhoff’s law for voltage and current on the branches do

not provide linearly independent equations. Therefore, it could exist an overcount of the degrees

of freedom on the circuit. To avoid that, we follow the procedure developed by M. H. Devoret

[Dev97; UM17]. Instead of working with branches variables we choose the node variables. The

advantages of choosing this method are that there are no superfluous variables, eliminating the

overcounting of variables. In what follows, we describe the flux node method, and with this, we

show how to obtain the circuit Lagrangian.

The method starts by choosing a reference node on the network; this node is called ground

node as depicted in Fig. (2.2). We consider this node as the passive node, and it is neglect in

the later calculations. The next step is to trace a spanning tree on the network. The spanning

tree starts from the ground node and connects all the remaining nodes without form loops on the
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network. We denote the set of branches forming the tree (twigs) by T , and we called the set

of branches forming the loops (links) as T̄ . For the networks depicted in Fig. (2.2), the chosen

spanning tree is formed by the set of branches T = {A,B,D,E,F,H, I}, and the loop branches

are given by the set T̄ = {C, I, J}. Afterwards, we define the node fluxes ϕn, which is related with

the branches fluxes Φb (cf. Fig. (2.2)) by the following relation

ϕn =
∑
b

SnbΦb, (2.6)

The matrix element Snb can take the values {1,−1, 0} depending whether the path traced from

the ground node to the node n belonging to the spanning tree coincide Snb = 1 or not Snb = −1

with the orientation of the current at the branch b, or whether the branch b does not belong to the

spanning tree Snb = 0. For the circuit shown in Fig. (2.2) the node fluxes in term of the branches

fluxes are given by

ϕ1 = ΦA, ϕ2 = ΦA + ΦB, (2.7a)

ϕ3 = ΦD + ΦE + ΦI, ϕ4 = ΦE + ΦI, (2.7b)

ϕ5 = ΦI,Φ6 = ΦI + ΦF, ϕ7 = ΦH. (2.7c)

Likewise, we can obtain the flux on the branch b regarding the node fluxes ϕn and ϕn′ , where

n, and n′ are the edges nodes of the branch b. Moreover, we need to differentiate between the

branches forming the spanning tree (twigs) and the branches closing loop (links). For the branches

closing the loop, we need to consider the fluxoid quantization rule. In such case, the fluxes on the

branches follow the relation

Φb∈T = ϕn − ϕn′ (2.8)

Φb∈T̄ = ϕn − ϕn′ + Φx (2.9)

For the circuit shown in Fig. (2.2), the flux on the branches Φb belonging to the spanning the tree

is given by the relations

ΦA = ϕ1,ΦB = ϕ2 − ϕ1,ΦD = ϕ3 − ϕ4 (2.10a)

ΦE = ϕ4 − ϕ5,ΦF = ϕ6 − ϕ5,ΦH = ϕ7,ΦI = ϕ5. (2.10b)
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Figure 2.3: An circuit example.(a) schematic representation of a pair of LC circuit capacitively
coupled through the capacitor C3. (b) The spanning tree of the coupled LC circuit. The network
contains one passive node, i.e., the ground ϕg and two active nodes.

For the branches closing loops (links), the flux is given by

ΦC = ϕ2 − ϕ3,ΦG = ϕ7 − ϕ6 + Φx,ΦJ = ϕ4 − ϕ1. (2.11a)

To obtain the Lagrangian of the circuit, we are assuming all capacitive elements on the network

are linear [UM17]. As a consequence, we can write the capacitive energy regarding the derivative

with respect to time of the flux on the branch, i.e., EC = CΦ̇2
b/2. With this assumption, we write the

energy of the circuit in term of the fluxes and the derivative concerning time; this is analogous to a

mechanical system, where w can write the Lagrangian in term of the position and the velocity.

To exemplify how to obtain the circuit Lagrangian, Let us consider the circuit depicted in Fig.

(2.3)(a) Consisting into two capacitively coupled LC resonator. We characterized k-th resonator

by the capacitance Ck, and the inductance Lk. We start by tracing the spanning tree on the circuit

depicted in red in the Fig. (2.3)(b). The tree is formed by the branches T = {L1, L2}, and the links

are given by the set T̄ = {C1, C2, C3}. The circuit is formed by five circuit elements; we have five

branch variables denoted as Φb (b is the branch index). Also, from the choose spanning tree, we

identify three nodes, the ground node ϕg and two active nodes ϕk, respectively. In such case, the

branches fluxes are given by

ΦA = ΦB = ϕ1, ΦD = ΦE = ϕ2, ΦC = ϕ2 − ϕ1, (2.12)

The next step is to compute the energy associated to each branch element using the node vari-

ables previously obtained. We obtain the Lagrangian as the difference between the capacitive

energy with the potential energy, i.e., L = T − U . Notice that we are considering the capacitive
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energy as the kinetic energy because its form is like the kinetic energy on mechanical systems

i.e., the energy is proportional to the derivative with respect of time of the generalized coordinate.

Besides, we are assuming the inductors contributes to the potential energy of the circuit. In such

case, the circuit Lagrangian reads

L =
C1

2
ϕ̇2

1 +
C2

2
ϕ̇2

2 +
C3

2
(ϕ̇1 − ϕ̇2)2 − ϕ2

1

2L1
+

ϕ2
2

2L2
. (2.13)

At this point, we can compute the equations of motion of the circuit using the Euler-Lagrange equa-

tions. These equations correspond to the Kirchhoff’s current and voltage law [Dev97]. Another way

is to compute the Hamiltonian associated with this Lagrangian. To compute the Hamiltonian we

need to compute the canonical momentum conjugate Q` = ∂L/∂[ϕ̇`]. By defining the flux vector

as ~ϕ = (ϕ1, ϕ2). The Lagrangian in the Eq. (2.13) can be written as a quadratic form

L =
1

2
~̇ϕ T Ĉ ~̇ϕ− 1

2
~ϕ T L̂−1~ϕ, (2.14)

where, Ĉ and L̂ are the capacitance and the inductance matrix [UM17], respectively. For the

studied circuit, these matrices have the following form

Ĉ =

 C1 −C3

−C3 C2

 , L̂−1 =

1/L1 0

0 1/L2

 . (2.15)

The canonical momentum conjugate vector ~Q is given by

~Q = Ĉ ~̇ϕ. (2.16)

Assuming that the capacitance matrix is regular, i.e., it has inverse Ĉ−1, it is possible to obtain ~̇ϕ

regarding the canonical momentum conjugate with the relation

~̇ϕ = Ĉ−1 ~Q, (2.17)

with this relation, we now apply the Legendre transformation H = ~̇ϕ T ~Q − L on the circuit La-

grangian to obtain the circuit Hamiltonian H

H =
1

2
~Q T Ĉ−1 ~Q+

1

2
~ϕ T L̂−1~ϕ. (2.18)
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For the circuit shown in Fig. (2.3), the circuit Hamiltonian reads

H =
C2

2C∗
Q2

1 +
C1

2C∗
Q2

2 +
2C3

C∗
Q1Q2 +

1

2L1
ϕ2

1 +
1

2L2
ϕ2

2, (2.19)

where, C∗ = C1C2 − C2
3 is the determinant of the capacitance matrix Ĉ. The Hamiltonian H

contains two terms, the first of them is the electrostatic energy stored on the capacitor as a function

of the node charges Q`, whereas, the second terms are the electromagnetic energy as a function

of the node fluxes ϕ`. Now, we are assuming that we are working in the ultra-low temperature

and the ultra-slow dissipation approximation. Thus, we treated the circuit variables as quantum

variables. Therefore, it is possible to quantize the Hamiltonian by promoting quantum operators

instead of a function, i.e., ϕ → ϕ̂ and Q → Q̂. Furthermore, as the fluxes node and the charge

node are canonical variables, the respective operators must satisfy the relation

[ϕ̂`, Q̂`′ ] = i~δ`,`′ . (2.20)

Depending on the superconducting device, the set of quantum operators may change. For in-

stance, in a superconducting LC circuit, the set of quantum operators are given by

ϕ` =

√
~Z0,`

2
(â` + â†`), Q` = −i

√
~

2Z0,`
(â†` − â`), (2.21)

where Z0,` =
√
L`/C` is the impedance of the `-th LC circuit, and a†` (an) is the boson operator,

satisfying the commutation relation [a`, a
†
`′ ] = δ`,`′ .For device as superconducting island coupled

through a Josephson junction, the set of operators are given by

ϕ` = −i~ ∂

∂N̂`
, Q` = −2eN̂`. (2.22)

Here, N̂` is the Cooper pair operator with 2e being the Cooper pair charge. For devices composed

by Josephson junctions interrupting a loop, the set of quantum operators are given by

ϕ` = ϕ̂`, Q` = −i~ ∂

∂ϕ̂`
. (2.23)

In this example, as we are considering a set of coupled LC circuit, the quantum operators describ-

ing the system are the given in Eq. (2.19). In such case, the Hamiltonian corresponds to a pair of
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coupled quantum harmonic oscillators

H = ~ω1

(
a†1a1 +

1

2

)
+ ~ω2

(
a†2a2 +

1

2

)
+ ~g12(a†1 − a1)(a†2 − a2). (2.24)

Here, ω` is the frequency of the `-th LC resonator. Moreover, g12 =
√
C2

3/(C
∗)2Z0,1Z0,2 is the

coupling strength among both LC oscillators.
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Chapter 3

Elements of superconducting

circuits

3.1 The transmon qubit

The transmon qubit [Koc+07] is a superconducting artificial atom where its degree of freedom cor-

responds to an excess of Cooper pairs in two superconducting islands. Formally, the transmon

qubit consists into two superconducting islands coupled through a pair of Josephson junctions.

The key features observed in this artificial atom consists of an insensitive concerning the environ-

mental offset charge. This improvement is achieved by coupling an additional shunt capacitance

on the circuit. Thus, the ratio between the Josephson energy (junction) and the charge energy

increase leading to an artificial atom with long coherence times. Furthermore, the inclusion of this

capacitance also produces a decrease in the anharmonicity of the energy levels on the circuit. As

a result, to measure the effective two-level system an additional energy level is required.

Figure. (3.1) shows the transmon circuit. The circuit is composed by two capacitors denoted

as Cg and Cb, an external voltage source Vg and two Josephson junctions in a superconducting

loop. We modeled each Josephson junction as an effective LC circuit with non-linear inductance

[Tin04]. Also, the superconducting loop where both junctions are placed is threading with an

external magnetic flux Φx. To obtain the Lagrangian, we note that the circuit contains five elements

(two Josephson junctions, two capacitors, and a voltage source). Hence, we describe the system

regarding five branch fluxes. Afterwards, we trace the spanning tree (see Fig. (3.1)(c)). The

spanning tree is formed by the set of branches T = {CB , Vg}, while, the links are given by the set
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Figure 3.1: Tranmon qubit circuit. (a) Reduced circuit for the transmon qubit. The circuit contains
a gate voltage Vg coupled to the superconducting island by a capacitor Cg which allow changing
the offset charge in the circuit. Two identical Josephson junctions are connected in parallel to
couple the two superconducting island. Additionally, a large shunted capacitance is connected in
the circuit. This capacitor has the function to increase the ratio EJ/EC . (c) Spanning tree chosen
for the Lagrangian derivation, the black dots represent active nodes on the tree. Dashed lines
stand for elements closing loops.

T̄ = {Cg, CJ , CJ}. In this spanning tree, we found three nodes, the ground node and two active

nodes ϕ1 and ϕ2 respectively. Thus, we write the branches nodes regarding the nodes fluxes by

the relation

ΦA = ϕ2, ΦB = ϕ1 − ϕ2, ΦC = ϕ1, ΦD = ϕ1, ΦE = ϕ1 − Φx (3.1)

Notice that the node flux ϕ2 corresponds to the flux associated with the voltage-biased Vg i.e,

ϕ2 =
∫ t
−∞ Vg(t

′)dt′. On the other hand, To write the Josephson energy conveniently, we define the

branch variable as Φ+ = (ΦD +ΦE)/2. Moreover, with the fluxoid quantization relation ΦE−ΦD =

Φx it is possible to write the branch fluxes of the Josephson junctions as ΦE = Φ+ + Φx/2,

and ΦD = Φ+ − Φx/2. Likewise, regarding the node variables, we obtain Φ+ = ϕ1. Thus, the

Lagrangian of the transmon reads

L =
CΣ

2
ϕ̇2

1 − CgVgϕ̇1 + EJ(Φx) cos

(
ϕ1

ϕ0

)
. (3.2)

Here, CΣ = Cg + CB + 2CJ is the total capacitance of the transmon, ϕ0 = φ0/2π is the re-

duced quantum flux, and Vg is the voltage-biased. We assume identical Josephson junction in this

derivation. As result, the loop with both junctions are considered as an one junction with variable

Josephson energy EJ(Φx) = 2EJ cos(Φx/ϕ0). On the other hand, We neglect the terms propor-

tional to V 2
g because does not contribute to the system dynamics. To obtain the Hamiltonian of the
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transmon, we compute the canonical momentum conjugate by the relation

Q1 =
∂L
∂ϕ̇1

= CΣϕ̇1 − CgVg. (3.3)

By inverting ϕ̇1, we obtain

ϕ̇1 =
Q1 + CgVg

CΣ
. (3.4)

The circuit Hamiltonian is obtained by applying the Legendre transformation to the circuit Hamilto-

nian and replacing the flux derivative with the expression obtained in Eq. (3.3)

H =
(Q1 − qg)2

2CΣ
− EJ(Φx) cos

(
ϕ

ϕ0

)
, (3.5)

where, qg = CgVg is the offset charge. The perform circuit quantization by considering quantum

operators instead of time-dependent functions. For the transmon qubit, the quantization is done by

promoting the operators ϕ1 → ϕ̂1, and Q1 → −2en̂1, where n̂1 is the Cooper pair operator. Thus,

replacing the operator the Hamiltonian takes the following form

H = 4EC(n̂1 − ng)2 − EJ(Φx) cos

(
ϕ̂1

ϕ0

)
, (3.6)

EC = e2/CΣ is the charge energy, which quantifies the required energy to place a single Cooper

pair on the superconducting island at zero gate voltage. ng = qg/2e is the offset charge energy,

which provides Cooper pairs in the superconducting islands. The next step is to write the Hamilto-

nian in the charge basis.

H = 4EC

+∞∑
n=−∞

(n1 − ng)2|n〉〈n| − EJ(Φx)

+∞∑
n=−∞

+∞∑
m=−∞

|n〉〈n| cos

(
ϕ̂1

ϕ0

)
|m〉〈m|, (3.7)

to obtain the matrix element 〈n| cos(ϕ̂1/ϕ0)|m〉 it is necessary to use the commutation relation

[φ̂/ϕ0, n̂1] = −i, and the Baker-Hausdorff lemma. In such case, the exponential of the operator is

written as e±iφ̂1/ϕ0 |n〉 = |n∓ 1〉. Thus, replacing this expression on the Hamiltonian we arrive at

H =

+∞∑
n=−∞

[
4EC(n1 − ng)2|n〉〈n| − EJ(φx)

2

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)]
. (3.8)

The second term on the Hamiltonian in Eq. (3.8) corresponds to the energy of the two Josephson
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Figure 3.2: Energy spectrum of the transmon for different Josephson energies. (a)-(c) Energy
spectrum for the transmon for different EJ/EC ratios as a function of the effective offset charge
Ng. Anharmonicity of the energy levels of the transmon depend on the ratio EJ/EC . (d) Energy
spectrum for the transmon qubit as function of the external magnetic flux φx for a fixed EJ/EC
ratio.

junction written in the charge basis. In this basis, this energy is the responsible of the transport of

Cooper pair between the superconducting islands [NB09].

In Figure (3.2), we show the energy spectrum of the transmon qubit for several EJ/EC ratios.

Notice that, for large Josephson energy, and near to the sweet spot (ng ≈ 1/2 + δn) [NPT99]. In

this limit, we can approximate the lowest energy levels as an effective two-level system.

H = 4EC

[(
δn+

1

2

)2

|0〉〈0|+
(
δn− 1

2

)2

|1〉〈1|
]
− EJ(Φx)

2

[
|0〉〈1|+ |1〉〈0|

]
, (3.9)

by expanding the binomial (δn± 1/2)2 ≈ 1/4± δn, the Hamiltonian becomes

H = 4EC + 8ECδnσ
z − EJ(Φx)

2
σx, (3.10)
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Figure 3.3: Control and readout circuit. (a) Schematic layout and the (b) equivalent circuit for a
transmon coupled to a resonator to measure the transmon qubit.

In the sweet spot point δn = 0, the Hamiltonian in its diagonal basis takes the following form

H =
ωq(Φx)

2
σ̄z, (3.11)

where ωq = EJ(Φx) is the flux-dependent two-level frequency. Changes on the qubits will be done

changing the external magnetic flux. On the other hand, we can perform non-demolition measure-

ment on the qubit measuring an ancillary system. For the transmon qubit, the measurement is

node by coupling an ancillary resonator. The setup of this scenario is given by (see. Fig. (3.2)(d))

Lread =
CΣ

2
ϕ̇2

1 + EJ(Φx) cos

(
ϕ1

ϕ0

)
+
CR
2
ϕ̇2

3 −
ϕ2

3

2Lr
− Cgϕ̇1ϕ̇3 − CinVgϕ̇3. (3.12)

Here, ϕ3 is the flux node of the LC circuit. Moreover, CΣ = Cg +CB + 2CJ is the total capacitance

for the transmon, CR = Cin + Cr + Cg is the total capacitance of the LC circuit. To obtain the

Hamiltonian of the coupled system, we express the Lagrangian as a quadratic form

Lread =
1

2
~̇ϕ T Ĉ ~̇ϕ− ~̇ϕ T Ĉg ~V − U(~ϕ). (3.13)

where ~ϕ = (ϕ1, ϕ3)T is the flux vector and ~V = (0, Vg)
T is the voltage vector. Ĉ and Ĉg are the

capacitance and gate capacitance matrix, respectively, and are defined as

Ĉ =

 CΣ −Cg
−Cg CR

 ; Ĉg =

0 0

0 Cin

 . (3.14)

moreover, U(~ϕ) is the potential energy associated with the Josephson junction and the inductor.

U(~ϕ) = −EJ(Φx) cos

(
ϕ1

ϕ0

)
+

ϕ2
2

2Lr
. (3.15)
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Now, we compute the canonical momentum conjugate vector ~Q through the relation

~Q =
∂Lread

∂[ ~̇ϕ]
= Ĉ ~̇ϕ− Ĉg ~V → ~̇ϕ = Ĉ−1( ~Q+ Ĉg ~V ), (3.16)

with this transformation together with the Legendre transformationH = 〈 ~Q, ~̇ϕ〉−L( ~Q, ~ϕ), we obtain

the circuit Hamiltonian

Hread =
(
~Q+ Ĉg ~V

)T
(Ĉ−1)T ~Q− 1

2

(
~Q+ Ĉg ~V

)T
(Ĉ−1)T ĈĈ−1

(
~Q+ Ĉg ~V

)
−

(
~Q+ Ĉg ~V

)T
(Ĉ−1)T ~Qg + U(~ϕ). (3.17)

As the capacitance matrix by definition is a symmetric matrix, its inverse is also a symmetric matrix,

hence (Ĉ−1)T = Ĉ−1. Thus the circuit Hamiltonian can be written as

Hread =
1

2

(
~Q+ Ĉg ~V

)T
Ĉ−1( ~Q+ Ĉg ~V ) + U(~ϕ). (3.18)

Where the inverse of the capacitance matrix Ĉ−1 is given by

Ĉ−1 =
1

C∗

CR Cg

Cg CΣ

 . (3.19)

Here, C∗ = CΣCR − C2
g is the determinant of the capacitance matrix Ĉ. Thus, the write the circuit

Hamiltonian as

Hread =
CΣ

2C∗
Q2

3 +
ϕ2

3

2Lr
+

CR
2C∗

Q2
1 − EJ(Φx) cos

(
ϕ1

ϕ0

)
+

Cg
C∗

Q1Q3 +
CgCin

C∗
VgQ1 +

CΣCin

C∗
VgQ3. (3.20)

Assuming Cr � {Cg, Cin, CB} [Koc+07], the Hamiltonian becomes

Hread =
(Q1 + qg)

2

2CΣ
− EJ(Φx) cos

(
ϕ1

ϕ0

)
+

Q2
3

2Cr
+

ϕ2
3

2Lr
+

Cg
CrCΣ

Q1Q3. (3.21)

In this Hamiltonian, we identify three contributions; the first is the transmon Hamiltonian shown in

Eq. (3.5). The second contribution corresponds to the LC circuit, and the last term is the capacitive
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coupling among these systems. Thus, the quantum Hamiltonian reads

Hread = 4EC(n̂1 − ng)2 − EJ(Φx) cos

(
ϕ̂1

ϕ0

)
+ ~ωr

(
a†a+

1

2

)
− g0n̂J(a† + a), (3.22)

here g0 = 2eβV 0
rms is the coupling strength between the transmon and the resonator. β = Cg/CΣ is

the capacitance ratio and V 0
rms =

√
~ωr/2CR is the zero point fluctuation voltage of the resonator.

The next step is to write the the transmon Hamiltonian in its diagonal basis

Hread = ~ωr
(
a†a+

1

2

)
+

∞∑
n=0

~ωn|n〉〈n| −
∞∑

n,n′=0

gn,n′ |n〉〈n′|(a† + a). (3.23)

We obtain the readout Hamiltonian by considering the dispersive regime among the resonator and

the transmon. This condition is achieved when gn,n′/∆n,n′ � 1, where ∆n,n′ = ωn − ωn′ − ωr
is the qubit-resonator detuning. Notice that, due to the decrease of the anharmonicity of the

energy levels on the transmon, the two-level approximation is not valid. In such case, the effective

Hamiltonian is obtained by considering the following transformation Heff = UHreadU
†, where the

transformation U is given by

U = eS−S
†
; S =

∑
n

gn+1,n

∆n+1,n
a|n+ 1〉〈n|. (3.24)

Using the Baker-Campbell-Hausdorff formula [LL73] and keeping terms up to second order in

gn+1,n/∆n+1,n, we obtain the effective Hamiltonian

Heff =

∞∑
l=0

~ωn|n〉〈n|+ ~ωra†a+
∑
n

~χn,n+1|n+ 1〉〈n+ 1| − χ0,1a
†a|0〉〈0|

+
∑
n

~(χn−1,n − χn,n+1)a†a|n〉〈n|. (3.25)

Where, χ`,`′ = g2
`,`′/∆`,`′ is the effective dispersive shift. By truncating the Hamiltonian ?? up to

the first two energy levels of the transmon, the readout Hamiltonian is given by

Heff =
~ω′q(Φx)

2
σz + ~(ω′r + χσz)a†a. (3.26)

Here, ω‘
q = ωq+χ01, and ωr−χ1,2/2 are the normalized qubit and resonator frequency, respectively.

Moreover, χ = χ0,1 − χ1,2/2 is the effective Stark-shift on the qubit. This Hamiltonian shows that

by measuring the resonator it is possible to know the qubit state.
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3.2 The flux qubit

Superconducting persistent current qubit, or flux qubit [Orl+99] is a type of superconducting arti-

ficial atom whose energy levels correspond to the circulating current in a superconducting loop.

This artificial atom is composed by a loop interrupted by three asymmetric Josephson junctions;

the three junctions increase the total inductance of the loop. Therefore, the superconducting phase

on the loop does not fluctuate much as the charge on the circuit. Thus, the degree of freedom de-

scribing the system corresponds to the superconducting phase instead of the charge as in the

transmon. On the other hand, as the circuit corresponds to a superconducting loop, the state of

the qubit can be modified by considering an external magnetic flux threading the superconducting

loop.

In Figure. (3.4) we depict the flux qubit circuit. The flux qubit is composed by a loop interrupted

by three Josephson junctions. We are assuming asymmetric junctions i.e., EJ1 = EJ2 = EJ , and

EJ3 = αEJ . Furthermore, the circuit is connected to two gate voltages through the capacitor Cg.

Finally, we are considering the loop is threaded by an external magnetic field Φx. Regarding the

node variables, the circuit Lagrangian is given by

L =
CΣ

2
(ϕ̇2

1 + ϕ̇2
2)− 2αCϕ̇1ϕ̇2 − γC(ϕ̇1VA + ϕ̇2VB)

+ EJ

[
2 + α− cos

(
ϕ1

φ0

)
− cos

(
ϕ2

φ0

)
− α cos

(
Φx1 + ϕ1 − ϕ2

ϕ0

)]
. (3.27)

Here, CΣ = (1+α+γ)C is the equivalent capacitance on the circuit. Furthermore, we eliminate the

terms proportional to V 2
A(B) because do not contribute to the system dynamics. The study starts

by considering the classical analysis from the potential energy given in Eq. (3.27). We will show

that one critical point of the potential corresponds to two fluxes circulating in the opposite direction.

These states define our qubit. The potential energy corresponds to the Josephson contributions

given by

U/EJ = 2 + α− cos

(
ϕ1

φ0

)
− cos

(
ϕ2

φ0

)
− α cos

(
Φx1 + ϕ1 − ϕ2

ϕ0

)
. (3.28)

The critical points correspond to flux variables (ϕ∗1, ϕ∗2) vanishing its respective derivatives

∂U

∂ϕ1
= sin

(
ϕ1

ϕ0

)
+ α sin

(
Φx1 + ϕ1 − ϕ2

ϕ0

)
= 0. (3.29)

∂U

∂ϕ2
= sin

(
ϕ1

ϕ0

)
− α sin

(
Φx1 + ϕ1 − ϕ2

ϕ0

)
= 0. (3.30)
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Figure 3.4: Flux qubit circuit. (a) Three Josephson junction connected in series in a supercon-
ducting loop composed our flux qubit. At each node of the circuit represented by the blue dots,
external sources have been connected to obtain off-set charges. (b) Four junction qubits. Two
Josephson junction form a SQUID which has Josephson energy and capacitance βC and βEJ ,
respectively. The SQUID has the function to modify the energy levels of the flux qubit.

These solution correspond to

sin

(
ϕ∗1
ϕ0

)
= − sin

(
ϕ∗2
ϕ0

)
→ ϕ∗1 = −ϕ∗2. (3.31)

sin

(
ϕ∗

ϕ0

)
= −α sin

(
2Φx1 + 2ϕ∗

ϕ0

)
. (3.32)

The first critical point represents two fluxes circulating with opposite direction, i.e., our qubits. To

show that this critical point is a minimum of U , we compute the determinant of the Hessian matrix

and evaluate this determinant with the critical point. The determinant of the Hessian matrix is

given by [RJ95]

Det[H] =
∂2U

∂ϕ2
1

∂2U

∂ϕ2
2

−
(

∂2U

∂ϕ1∂ϕ2

)2

. (3.33)

Det[H] = α cos

(
Φx1 + ϕ1 − ϕ2

ϕ0

)(
cos

ϕ1

ϕ0
+ cos

ϕ2

ϕ0

)
+ cos

ϕ1

ϕ0
cos

ϕ2

ϕ0
. (3.34)

By replacing the critical point given in Eq. (3.33) in the Eq. (3.38), we obtain Det[H] > 0 and

∂2U/∂ϕ2
` > 0, so the critical point ϕ∗1 = −ϕ∗2 is a minimum of U . The surface of potential is plotted

in Fig. (3.5)(a). The 2D projection on Fig. (3.5)(b) shows the two minimum corresponding to the

circulating current state. To obtain the Hamiltonian of the circuit it is convenient to write it as a

quadratic

L =
1

2
~̇ϕ T Ĉ ~̇ϕ− ~̇ϕ T Ĉg ~V − U(~ϕ). (3.35)
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(a) (b)

Figure 3.5: Flux qubit potential. (a) Surface graphic for the potential energy U(ϕ1, ϕ2), for f = 1/2
and α = 0.8 as a function of the flux parameters. (b) 2D plot for the energy potential as function of
ϕ2. In this case, we are considering ϕ1 = −ϕ2. As we can see the potential exhibit two minimum,
which correspond to two fluxes circulating in opposite direction.

Here, we have defined the capacitance matrix Ĉ and the gate capacitance matrix Ĉg as

Ĉ = C

1 + α+ γ −α

−α 1 + α+ γ

 ; Ĉg = γC

1 0

0 1

 , (3.36)

where, ~̇ϕ T = (ϕ̇1, ϕ̇2) and ~V T = (VA, VB) correspond to the flux and gate voltage vector respec-

tively. The canonical conjugate momentum is obtained with the relation ~Q = ∂L/∂ ~̇ϕ.

~Q = Ĉ ~̇ϕ− Ĉg ~V , (3.37)

Thus, as Ĉ is invertible, we can also invert the flux vector ~̇ϕ

~̇ϕ = Ĉ−1
(
~Q+ ~qg

)
. (3.38)

where, ~qg = Ĉg ~V is the offset charge. The Hamiltonian is obtained by performing the Legendre

transformation H = 〈 ~Q, ~̇ϕ〉 − L( ~Q, ~ϕ), and we replace the expression ~̇ϕ from Eq. (3.38)

H =
(
~Q+ ~qg

)T
(Ĉ−1)T ~Q− 1

2

(
~Q+ ~qg

)T
(Ĉ−1)T ĈĈ−1

(
~Q+ ~qg

)
−

(
~Q+ ~qg

)T
(Ĉ−1)T ~qg + U(~ϕ). (3.39)

H =
1

2

(
~Q+ ~qg

)T
Ĉ−1( ~Q+ ~qg) + U(~ϕ). (3.40)
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Figure 3.6: Energy levels of the flux qubit. Energy spectrum as a function of the external mag-
netic flux f for EJ/Ec = 80, α = 0.8 and γ = 0.02. At the point f = 0.5, we observe that the first
two energy levels are closed to each other, allowing made an effective two-level approximation.

Where we write the inverse of the capacitance matrix Ĉ−1 as

Ĉ−1 =
1

C(γ + 1)(1 + 2α+ γ)

1 + α+ γ α

α 1 + α+ γ

 . (3.41)

We perform the quantization of the circuit Hamiltonian by considering operators instead of function.

These operators must satisfy canonical commutation relation. For the flux qubit, as the charge

fluctuates much than the flux. The quantization is done promoting ~Q→ i~∇ϕ

H =
1

2

(
i~~∇ϕ − ~qg

)T
Ĉ−1

(
i~~∇ϕ − ~qg

)
+ U(~ϕ). (3.42)

This Hamiltonian can be written in a simpler way considering the following form of the wave function

Ψ(~ϕ) = ei(kAϕ1+kBϕ2)ψ(~ϕ), with k` = −γCV`. Thus, the Hamiltonian reads

H =
−~2

2
~∇ T
ϕ Ĉ

−1~∇ϕ + U(~ϕ). (3.43)

By performing the transformation ϕp = (ϕ1+ϕ2)/2 and ϕm = (ϕ1−ϕ2)/2 the Hamiltonian becomes

H = − ~2

2Mp
∂2
ϕp −

~2

2Mm
∂2
ϕm − EJ

[
2 + α− 2 cos

ϕp
ϕ0

cos
ϕm
ϕ0
− α cos

(
Φx1 + 2ϕm

ϕ0

)]
. (3.44)

Here, Mp = 2C(1 + γ) and Mm = 2C(1 + 2α + γ) are the effective capacitance. The energy

spectrum of the Hamiltonian corresponds to bands energy, corresponding to the solutions of the
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central equation [Kit66]. The energy spectrum of the Hamiltonian in Eq. (3.44) is shown in Fig.

(3.6) as function of the external flux Φx1. Near the point, Φx1 = φ0/2 the first two energy levels

of the flux qubit are close to each other, and hence the system can be truncated as an effective

two-level system. To quantify the energy of this effective two-level system, we consider the tight-

binding approximation [Orl+99; Wal+00], where the wavefunction is written as Ψ = c+u
+ + c−u

−,

here, u± corresponds to the solution on each well on the potential U . The wavefunction Ψ must

satisfy the following Shrödinger equation

Hu+,u+ Hu+,u−

Hu−,u+ Hu−,u−


c+
c−

 = E

c+
c−

 . (3.45)

The diagonal matrix elements correspond to the energy of each well as shown in Fig (3.5)(b). At

the degeneracy point Φx1 = φ0/2 both wells have the same energy i.e., Hu±,u± = ±E0 = 2Ip(Φx−

φ0/2) with Ip being the persistent current on the loop and φ0 is the flux quantum. Moreover, the

non-diagonal terms correspond to the tunnelling energy denoted as ∆. Thus, the effective two-

level Hamiltonian is given by

E0 −∆

−∆ −E0

 = E0σ
z −∆σx, (3.46)

Written this Hamiltonian in its diagonal form, we arrive at the flux-qubit Hamiltonian

H =
√

∆2 + E2
0σ

z =
~ω
2
σz. (3.47)

The energy gap of the flux-qubit depends directly on the external magnetic flux and the tunnelling

between nearest neighbour. Hence by modifying these parameters, it is possible to manipulate

the qubit. We modify the qubit frequency by changing the external magnetic flux Φx1 threading the

loop, whereas, the modification of the tunnelling energy is through the area on the third junction.

However, this is not possible in the experimental situation. In such case, the manipulation qubit

gap and tunnelling parameter are modified by including a superconducting loop interrupted by a

Josephson junction with capacitance CJ4 = αC, and Josephson energy EJ4 = αEJ . On the other

hand, the branch variable of this junction is related with active node variables through the fluxoid

quantization rule given by ΦJ = ϕ1 − ϕ2 − Φx1 − Φx2. The Lagrangian of the system is given by
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(VA = VB = 0)

L =
Ceq
2

(ϕ̇2
1 + ϕ̇2

2)− 4αCϕ̇1ϕ̇2

EJ

[
2 + 2α− cos

ϕ1

ϕ0
− cos

ϕ2

ϕ0
− α cos

(
ϕ1 − ϕ2 + Φx1

ϕ0

)
− α cos

(
ϕ1 − ϕ2 − Φx1 − Φx2

ϕ0

)]
, (3.48)

where Ceq = (1 + 2α+ γ) is the total capacitance of the system. By performing the transformation

ϕ1 = ϕp + ϕm. The Lagrangian reads

L =
C(1 + γ)

2
ϕ̇p

2 +
C(1 + 2α+ γ)

2
˙ϕm

2

EJ

[
2 + 2α− cos

ϕp
ϕ0

cos
ϕm
ϕ0
− 2α cos

(
Φx2

2ϕ0

)
cos

(
2ϕm + Φx1

ϕ0
− Φx2

2ϕ0

)]
. (3.49)

Notice that this Lagrangian is like the obtained in Eq. (3.27), but now, the parameter alpha is

pondered with a term proportional to the external magnetic flux threading on the second loop.

Thus, we obtain a flux-qubit with controllable tunnelling energy. This tunability allows manipulating

the states of the flux qubit. The Hamiltonian for this Lagrangian is given by

H = − ~2

2Cp
∂2
ϕp −

~2

2Cm
∂2
ϕm

+ EJ

[
2 + 2α− cos

ϕp
ϕ0

cos
ϕm
ϕ0
− 2α cos

(
Φx2

2ϕ0

)
cos

(
2ϕm + Φx1

ϕ0
− Φx2

2ϕ0

)]
. (3.50)

where Cp = 2C(1 + γ), and Cm = 2C(1 + 4α+ γ). To obtain the Hamiltonian, we are considering

that both external magnetic flux i.e., Φx1 = φ0 + δ1 and Φx2 = φ0 + δ2. Thus, with the tight-binding

approximation, the effective two-level Hamiltonian reads

H̄ =
√
φ2

0 + ∆2σz +H1. (3.51)

H1 = r1

(
δ1 +

δ2
2

)(
cos θ0σ

z − sin θ0σ
x
)
− s2δ2

(
sin θ0σ

z + cos θ0σ
x
)
, (3.52)

where r1 = 2πEJ
√

1− 1/(4α) and s2 = 3.5∆
√
EJ/EC [Orl+99; Wal+00] and θ0 = ∆/f0. Thus,

by adding an additional loop interrupted with a Josephson junction it is possible to manipulate the

states of the flux qubit.
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3.3 The coplanar waveguide resonator

Another essential element in superconducting circuits is the photon sources. Many efforts have

been made to build electrical circuits behaving as, for example, Faby-Perot cavity in cavity quan-

tum electrodynamics [Boa+07]. In superconducting circuits, several devices have been proposed

as possible photon sources, devices as, LC resonators [Gir11] and strip-line resonator [Ito74].

However, these devices do not offer cavities with high-quality factors. Technological progress

on fabrication techniques has made possible to design superconducting cavities with high-quality

factors. A remarkable device is the coplanar waveguide resonator (CWR) [Göp+08]. Coplanar

waveguide resonator has proven to be an excellent device to generate photons. Flexible fabri-

cation techniques have allowed designing resonators operating at the microwave regime (1 ∼10

GHz) with quality factors around of Q � 106 [Sag+11], and a lifetime of (Tκ ∼ 2.5µs) [Wan+09].

Moreover, the vacuum field achieved in this resonator is at least one hundred times larger than the

achieved in 3D cavities in cavity quantum electrodynamics [RBH01]. This increase on the vacuum

field have permitted to implement the light-matter interaction among an artificial superconducting

atom with microwave resonator.

Figure (3.7) shows the circuit of the coplanar waveguide resonator. The device is considered

as a set of N (N approaching to infinite) LC circuit connected in series each of them characterized

by their capacitance and inductance per unit of length c dz, and l dz, respectively. Under this

assumption each LC circuit is modelled within the lumped circuit element description [Poz09] i.e.,

both current and voltage do not vary with the position. Thus, the circuit Lagrangian for the CWR

reads

L =

N∑
n=1

cdz

2
ψ̇2
n −

N−1∑
n=1

1

2ldz
(ψn+1 − ψn)2. (3.53)

where the flux node on the n-th LC resonator is defined as ψn =
∫ t
−∞ vn(t′)dt′, with v(t′) being the

voltage drop through the specific branch component. The next step in the derivation is to consider

the continuum limit. In this limit, we assume that the number of resonator approaches to infinite

and the length dz → 0. Under this condition, we assume that the flux on the coplanar waveguide

resonator is a smooth function on the position ψ(z, t). In this limit, we obtain

ψn+1 = ψ(zn+1, t) = ψ(zn, t) + ∂zψ(zn, t)dz. (3.54)

lim
∆z→0

∑
n

∆z →
∫
dz. (3.55)
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(a)

(b)
. . .

Figure 3.7: Coplanar waveguide resonator. Diagram for superconducting coplanar waveguide
resonator. (a) Illustration for a λ/2 transmission line resonator, which consists in three pieces of
superconducting metal. At both edges of the resonator, there are breaks; these breaks correspond
to a capacitor which has the function to vanish the current at the edges of the resonator. (b)
Lumped-element circuit for the λ/2 coplanar waveguide. The resonator is divided into many LC
resonator, each of them is characterized by the capacitance and the inductance per unit of length
cdz and ldz, respectively.

Replacing these relations on Eq. (3.53), the circuit Lagrangian takes the following form

L =

∫ L

0

dz

[
c

2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
. (3.56)

To obtain the profile of the current and the voltage on the resonator, we solve the equation of

motion associated with the Lagrangian in Eq. (3.56). The equation of motion is given by

∂2
t ψ(z, t)− v2∂2

zψ(z, t) = 0, (3.57)

This equation corresponds to the wave equation for an electric wave propagating with group ve-

locity v = 1/
√
lc. The boundary conditions for the flux ψ(z, t) depends whether the ends of the

resonator are open or not. In superconducting circuit, there are two types of resonators. One of

them corresponds to the half-wavelength resonator which has both edges open. Thus, the current

on the edges is zero, and the voltage, in the end, reaches its maximal value at this point. The

second resonator is the quarter-wavelength which contains only one end open. In the open end,

there is no current, and the voltage reaches its maximal value. In the closed end, there is no
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voltage, and the current reaches its maximal value. These boundary conditions are represented

by: Half-wavelength transmission line resonator

∂zψ(z = 0, t) = ∂zψ(z = L, t) = 0, (3.58)

For the quarter-wavelength transmission line resonator, we have the followings boundary condi-

tions

∂zψ(z = 0, t) = ∂tψ(z = L, t) = 0. (3.59)

We solve the wave equation considering the following assumption for the flux ψ(z, t)

ψ(z, t) =

∞∑
`=0

[
A`ei(k`z−ω`t) + B`e−i(k`z−ω`t)

]
, (3.60)

Where A` and B` are coefficient determined by the boundary conditions in Eq. (3.58), and Eq.

(3.58). Replacing this normal-mode expansion in the wave equation given in Eq. (3.57) we obtain

ψ(z, t) =

√
2

L

∞∑
`=0

cos(k`z)e
−iω`t, (3.61)

where k` is the wave number for the electrical wave. We obtain the value of the wavenumber with

the boundary conditions given in Eq. (3.58), and Eq. (3.59). For the half-wavelength and quarter-

wavelength resonator, the wave vector is given by k` = π`/L and k` = π(2` + 1)/L, respectively.

We obtain the expression for voltage and current through the following constitutive relations

v(z, t) =
∂ψ(z, t)

∂t
=

√
2

L

∞∑
`=0

ω` cos(k`z)e
−iω`t. (3.62)

i(z, t) = −1

l

∂ψ(z, t)

∂z
= −

√
2

L

∞∑
`=0

k`
l

sin(k`z)e
−iω`t. (3.63)

On the other hand, to obtain the circuit Hamiltonian, we compute the canonical conjugate momenta

Q through the relation

Q =
∂L

∂[∂tψ]
= c∂tψ(z, t). (3.64)

The canonical momentum corresponds to the charge on the waveguide. Afterwards, we perform
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the Legendre transformation H = Q∂tψ − L obtaining the following system Hamiltonian

H =

∫ L

0

dz

[
1

2c
Q2 +

1

2l
[∂zψ]2

]
. (3.65)

Now, we proceed to quantize the waveguide Hamiltonian. As both, fluxes and charges are time-

dependent functions, it is convenient to quantize the waveguide in the Heisenberg picture. Thus,

the operators Q̂ and ψ̂ are time-independent and satisfy the following commutation relation

[Q̂(z), ψ̂(z′)] = i~δ(z − z′), [Q̂(z), Q̂(z′)] = 0, [ψ̂(z), ψ̂(z′)] = 0. (3.66)

Thus, we represent both operators as

ψ̂(z) =

∞∑
k`=0

√
~

2cLω`

[
â`e

ik`z + b̂`e
−ik`z

]
. (3.67)

Q̂(z) =

∞∑
k`=0

−i
√

~cω`
2L

[
â`e

ik`z − b̂`e−ik`z
]
. (3.68)

In these expression, â` and b̂` correspond to boson operators. As we are considering the quan-

tization of a transmission line, the propagating waves must be real waves. This condition implies

that we can describe the flux operator as a real scalar field [Pes18].

ψ̂(z, t) =

∞∑
k`=0

√
~

2cLω`

[
â`e

ik`z + â†`e
−ik`z

]
. (3.69)

Q̂(z, t) =

∞∑
k`=0

−i
√

~cω`
2L

[
â`e

ik`z − â†`e−ik`z
]
. (3.70)

By replacing these operators on the Hamiltonian in Eq. (3.65) we arrive at the quantum Hamilto-

nian of the transmission line resonator

H =

∞∑
k`=0

~ω`
(
a†`a` +

1

2

)
. (3.71)

Thus, the coplanar waveguide resonator Hamiltonian corresponds to an infinite set of quantum

harmonic oscillators of frequency ω`.
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Chapter 4

The quantum Rabi model

4.1 Energy spectrum

The quantum Rabi model was introduced at the end of the decade of 1930, describing the interac-

tion of an atom with a highly oscillating weak magnetic field [Rab36]. Likewise, the quantum Rabi

model describes the simplest interaction between an atom with a quantized electromagnetic field

mode. The interaction between those systems correspond to the dipole interaction, i.e., the energy

levels of the atom interact with the quadrature of the electromagnetic field. In the far-wavelength

approximation (field does not depend on the position) [SZ97]. In superconducting circuits (the

scope of this theses) the dipole interaction is obtained through the galvanic coupling between a

flux-qubit with a coplanar waveguide resonator [Abd+08; Chi+04], or as the capacitive coupling

between a transmon qubit with a transmission line resonator [Wal+04; TRK92]. The quantum Rabi

Hamiltonian is given by

HQRS = ~ωcava
†a+

~ωq
2
σz + ~g(σ+ + σ−)(a† + a). (4.1)

Here, ωcav is the frequency of the quantized field mode, ωq is the frequency gap of the two-level

system, and g is the dipolar coupling between the two-level system and the field mode. Besides,

a† (a) correspond to the creation (annihilation) boson operator describing the field mode, and σz,

σ± are the Pauli matrices describing the two-level system.

In the strong-coupling regime, 0 < g < 0.01ωcav the quantum Rabi model can be approximated

with the rotating wave approximation, leading to the renamed Jaynes-Cummings model [Sho07;

KM80]. The Jaynes-cummings model has the number of excitation operator Ne = a†a + σ+σ−
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Figure 4.1: Energy spectrum of the quantum Rabi system. (a) Energy spectrum of the quantum
Rabi model as a function of the coupling g for the qubit ad the resonator in resonance ωq = ωcav.
Orange lines correspond to states with parity p = +1, and blue dashed lines stand for eigenstates
with parity p = +1.

as a conserved quantity, imposing a continuous symmetry U(1). In such a case, the model can

diagonalise in an effective 2× 2 basis involving one excitation either in the atom and the field. This

basis is usually known as the Jaynes-cummings doublet [SZ97]. On the other hand, in the pertur-

bative ultra-strong coupling regime 0.01 < g < 0.03ωcav, the counter-rotating terms on the Jaynes-

Cumming model g(a†σ+ +aσ−) become significant. However, it is possible to obtain their contribu-

tions with perturbation theory. Moreover, in the non-perturbative regime, i.e., 0.3 ≤ g/ωcav ≤ 1 the

counter-rotating terms cannot be expressed as perturbative contributions of the Jaynes-Cummings

model. Instead, it is necessary to diagonalise the fully Rabi model. Several ways have been taken

to obtain the energy spectrum and the energy states of the quantum Rabi model. D. Braak did

the most significant achievement [Bra11; Lee+17] by diagonalising the quantum Rabi model. In

such a case, the Hamiltonian is written in the Bogoliubov space [Bra11; Lee+17], leading to a set

of coupled differential equations. The eigenvalues of this set of the equation are divided into two

types: regular and exceptional. The former corresponds to the energy spectrum of the uncoupled

system, and the latter stands to the quantum Rabi model energy spectrum [Bra11].

As we said before, the quantum Rabi model in the strong-coupling regime, there is a con-

tinuous symmetry allows diagonalising the model in 2 × 2 basis. However, the counter-rotating

terms arising in the ultra-strong coupling regime breaks down this symmetry, and the continuous

symmetry is changed by a discrete ones known as parity Z2. The parity symmetry is defined by

the parity operator defined as P = −σz ⊗ eiπa†a with eigenvalues p = ±1. Notice that the parity

operator commutes with the quantum Rabi Hamiltonian, i.e., [HQRS,P] = 0. As a result, we can
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simultaneously diagonalise both operators on a common basis {|σ, p〉}∞σ=0. Thus, we can label

each energy level concerning their energy σ, and their parity p. This labelling permits to divide the

whole Hilbert space into two orthogonal subspaces (as shown in Fig. (4.1)), the even subspace

p = +1 and the odd subspace p = −1, respectively. We can expand each subspace in terms of

the following chains

|g, 0〉 ↔ |e, 1〉 ↔ |g, 2〉 ↔ |e, 3〉 ↔ ... (p = +1), (4.2)

|e, 0〉 ↔ |g, 1〉 ↔ |e, 2〉 ↔ |g, 3〉 ↔ ... (p = −1). (4.3)

where |g(e)〉 is the ground (excited) state of the two-level system, and |n〉 is the n-th Fock state

of the field mode. Therefore, from the energy spectrum depicted in Fig. (4.1) the lowest energy

levels have parity p = +1, and p = −1, respectively. Thus, we can write these states as follows

|0,+〉 =

∞∑
n=0

an|g, 2n〉+ bn|e, 2n+ 1〉 (4.4)

|1,−〉 =

∞∑
n=0

cn|g, 2n+ 1〉+ dn|e, 2n〉 (4.5)

Notice that the low-lying energy spectrum of the Rabi model correspond to entangled light-matter

states. On the other hand, The parity symmetry Z2 presents on the Rabi model in the ultra-strong

coupling regime give rise to selection rules between energy transition, which are not appreciable

in the strong-coupling regime [FD+16a]. In fact, in the quantum Rabi model, there are interactions

which couple states with identical or distinct parity. For instance, it has demonstrated that driving

lasers as Hd = (a + a†), and Hd = σx connect states belonging to different parity subspaces

because the matrix element 〈σ,±|Hd|σ′,∓〉 6= 0. Likewise, driving laser as Hd = σz couples

states belonging to the same parity subspace due to the matrix element 〈σ,±|Hd|σ′,±〉 6= 0.

The emergence of these selection rules does not exhibit in the Jaynes-Cummings model have a

profound impact in the development of this thesis.

4.2 Description of the dissipation

All quantum systems unavoidable interacts with their environment producing detrimental effects

as energy relaxation and loss of coherence. Master equation formalism deals with the study of

these detrimental effects [SZ97]. For systems whose light-matter coupling strength is within the
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Figure 4.2: Dissipation of the quantum Rabi system under the standard master equation.
Evolution of the Fidelity between the state ρst = |g, 0〉〈g, 0| with the ground state of the QRS
obtained through the standard master equation for different coupling constants g = (0.01, 1). As
the coupling strength decreases, the Fidelity between the ground state with ρst approaches to one.
The system parameter is given by ωcav = 2π × 10 GHz, ωq = ωcav, and γa = γσx = 0.1ωcav.

strong coupling regime, the master equation formalism assumes that all system components (light

and matter) evolve under independent channels. For the Jaynes-cummings model, the dissipative

dynamics is governed by the following master equation

ρ̇ = −i[HJC , ρ] + La(ρ) + Ld(ρ) + Ldn(ρ), (4.6)

HJC = ~ωcava
†a+

~ωq
2
σz + ~g(σ+a+ σ−a†), (4.7)

LO(ρ) =
γO
2

(n̄O + 1)(2OρO† − {O†O, ρ}) +
γO
2
n̄O(2O†ρO − {OO†, ρ}), (4.8)

Ldn(ρ) = γdn(σzρσz − ρ), (4.9)

where HJC is the Jaynes-Cummings Hamiltonian. Moreover, LO, (O = a, σ−) is the Lindblad

operator, which describe the effect of the thermal reservoir on the two-level system (σ−) and

on the cavity (a), at rate γO. Furthermore, the two-level system additionally interacts with the

damping reservoir (σz) at rate γdn. Under this dynamics, a system initially prepared in an excited

state should evolve to its ground state if the reservoir is at zero temperature. Likewise, the system

prepared in the ground state should evolve to the thermal state at temperature T whether the

reservoir is at finite temperature T . However, for system whose light-matter coupling strength is

comparable or larger than the bare frequencies of the system component this description fails.

For instance, in the dissipative dynamics of the quantum Rabi model, the independent channel

description is not valid anymore. Thus, the dissipative and non-dissipative channels must be

considered as a whole. Furthermore, we need also to take into account the anharmonic nature of
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the energy spectrum of the quantum Rabi model. Therefore, by considering the standard master

equation formalism, some unphysical results should appear. In the Reference [Wer+08], the uses

of this master equation produces that starting from the state |g, 0〉 (Jaynes-Cummings ground

state), the system can generate photons even though the system is at zero temperature. This effect

is mainly produced by the fact the dark state at which the standard master equation converges,

i.e., ρst = |g, 0〉〈g, 0| is not the true ground state of the quantum Rabi model (see Eq. (4.4), and Eq.

(4.5)), as a result the system at zero temperature converges to a superposition of excited state

[BGB11]. Fig (4.2) shows the evolution of the fidelity between the ground state of the Jaynes-

Cummings model with the ground state of the Rabi model computed with the standard master

equation as a function of the light-matter coupling strength. Notice that as the coupling strength

increases, the fidelity among the steady state obtained with the master equation and the ground

state of the quantum Rabi system decreases.

The master equation for systems operating beyond the strong coupling regime will need to

consider additional factors not considered before, as the anharmonicity of the energy spectrum

of the light-matter system, besides, the ground state of the system contains photons. The first

approach toward describing the dissipative dynamics of the quantum Rabi model has been made

through of the second-order time-convolutionless projection operator method [BP+02; DL+09], In

such a case, the master equation takes into account the coloured bath approximation, i.e., each

energy levels have its respective decay rates. With this considerations, the new master equation

reads

ρ̇ = −i[HQRS, ρ] +
∑
`

(Û`ρŜ` + Ŝ`ρÛ
†
` − Ŝ`Û`ρ− ρÛ

†
` Ŝ`). (4.10)

Here, HQRS is the quantum Rabi Hamiltonian, Ŝ` = (O +O†), (` = a, σ−) is the effective collapse

operator taking into account the interaction among the Rabi system with the thermal reservoir of

the two-level system and the cavity. Furthermore, Û` is described by

Û`(t) =

∫ ∞
0

v`(t
′)e−it

′HR Ŝ`e
it′HRdt′, (4.11)

v`(t) =

∫ ∞
0

γ`(ω)

2π
(n̄`(ω)eiωt

′
+ [n̄`(ω) + 1]e−iωt

′
)dω, (4.12)

where γ`(ω) is the energy-dependent loss rate for both qubit and cavity, usually, these decay rates

depend on the density of states at energy ~ω and must be equal to zero at negative frequencies.

The next step is to write the master equation in the dressed basis. Write the master equation in the
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quantum Rabi system basis permit to solve the problem associated with the presence of photons

in the QRS ground state as well as obtain that the system evolves to the true ground state when

the reservoir is at zero temperature. We write the quantum Rabi model in its diagonal form as

follows HQRS =
∑∞
σ νσ|σ, p〉〈σ, p|. Hence, the master equation is given in Eq. (4.10) is expressed

as

ρ̇ = −i
∑
σ=0

[νσ|σ, p〉〈σ, p|, ρ] +
∑
`

(Û`ρŜ` + Ŝ`ρÛ
†
` − Ŝ`Û`ρ− ρÛ

†
` Ŝ`), (4.13)

where, the operator Ŝ`, and Û` have been expressed in the Rabi basis

Ŝ` =
∑

σ′,σ>σ′

[
〈σ, p|S`|σ′, p′〉|σ, p〉〈σ′, p′|+ 〈σ′, p′|S`|σ, p〉|σ′, p′〉〈σ, p|

]
, (4.14)

Û` =
∑

σ′,σ>σ′

γ`(νσσ′)

2
〈σ, p|S`|σ′, p′〉|σ, p〉〈σ′, p′| (4.15)

At this point, several assumptions have been made, the first concerns with the selection rules of

the QRS operators. As the operators a+a†, and σx only connect states belonging to different parity

subspaces, we obtain that there are no diagonal contributions to the master equation produced by

this operators. In other words, we obtain 〈σ,±|S`|σ′,±〉 = 0 for all σ, σ′. Furthermore, we write

the summation in such a way that term with negative frequencies are not allowed. The next step

into the derivation is to express the master equation in the interaction picture. We perform this

procedure to eliminate via secular approximation all the terms whose oscillation be smaller than

the dressed decay rate, i.e., Γσ,σ
′

` (νσ,σ′) = γ`(νσ,σ′)|Sσ,σ
′

` |2/2. After this approximation, we arrive at

the master equation in the dressed basis for the quantum Rabi model in the ultra-strong coupling

regime [BGB11]

ρ̇ = −i[HQRS, ρ] +
∑
`

∑
σ′,σ>σ′

Γσ,σ
′

` (νσ,σ′)

[
|σ, p〉〈σ′, p′|ρ|σ′, p′〉〈σ, p| − 1

2

{
|σ, p〉〈σ, p|, ρ

}]
.

(4.16)

In implementation based on circuit quantum electrodynamics [Rid+12], the usual form for the

coloured decay rate is given by

Γσ,σ
′

` (νσ,σ′) = 2πd`(νσ,σ′)α
2
` (νσ,σ′)|Sσ,σ

′

` |2, (4.17)

where, d`(νσ,σ′) is the spectral density of the bath at frequency νσ,σ′ , α2
` (νσ,σ′) is the system-
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Figure 4.3: Dissipation dynamics into the dressed states master equation. Evolution of the
population, computed with the master equation given in Eq. (4.16) for the Rabi system initialized
in the 20-th excited state (a), and the ground state (b), and the environment at low temperature
(T = 10 mK in (a)), and high temperature (T = 200 mK in (b)). The system parameter is given by
ωcav = 2π × 10GHz, ωq = ωcav, and γa = γσx = 0.1ωcav.

environment coupling strength, which also depend on the energy transition (coloured bath approx-

imation). The shape of both spectral density and the system-bath coupling strength depends on

how the superconducting elements coupled to the reservoir. For circuit quantum electrodynamics,

the resonator coupled through the quadratures. Hence, the spectral density can be considered

constant i.e, d`(νσ,σ′) = γ`/ω`, with ω` being the bare frequency of the system composing the Rabi

system, and the system-environment coupling is linear in the energy transition α2
` (νσ,σ′) = νσ,σ′ .

Therefore, the coloured decay rate for this master equation is given by

Γσ,σ
′

` (νσ,σ′) =
γ`νσ,σ′

ω`
|Sσ,σ

′

` |2. (4.18)

Figure (4.3) show the evolution of the population of the eigenstate of the quantum Rabi model for

the system evolving under the master equation given in Eq. (4.16). The evolution of the population

is in agreement with the expected result of a master equation i.e., the system prepared in a higher

state at low temperature decay into the ground state (see (a)), whereas, for a system prepared in

the ground state evolves to the thermal state where the bath is a finite temperature (see (b)).

46



4.3 Implementation of the quantum Rabi model in supercon-

ducting circuits

We study how to achieve the ultra-strong coupling regime (USC) in a superconducting circuit com-

posed by a superconducting artificial atom (flux-qubit) directly coupled to a coplanar waveguide

resonator [Abd+08] as shown in Fig. (4.4). The coupling strength increases between both sub-

systems in two ways: By considering a non-uniform coplanar waveguide resonator. The change

of the shape on the resonator at the position where we place the flux qubit [Bou+09], and couples

an additional Josephson junction at the wire shared between the qubit and the resonator [Ber+05;

Nis+07]. As a consequence, the inductance of the resonator increases allowing to achieve the

ultra-strong coupling regime. Figure (4.4) shown the effective circuit, which is composed of a λ/2

coplanar waveguide where coupled at the middle with a four-junction flux qubit. The Lagrangian

of the circuit is given by

L =

∫ L

−L
dz

[
c

2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
+

4∑
k=0

[
CJk

2
ϕ̇2
k + EJk cos

(
ϕk
φ0

)]
. (4.19)

Here, c and l correspond to the capacitance and inductance per unit of length of the CWR,

respectively. Moreover, CJk and EJk are the Josephson capacitance and energy for the k-th

junction, respectively. Furthermore, We assume the coupling junction is placed at the position z1

and z2. Thus, the flux on the junction corresponds to the phase difference of the CWR ∆ψ =

ψ(z2)− ψ(z1). Besides, the fluxoid quantization relation on the loop forming the flux-qubit is given

by

ϕ1 + ϕ2 − ϕ3 −∆ψ = φx (4.20)

Replacing this relation on the Lagrangian given in Eq. (4.19), we obtain

L = LCPW + Lq + Lint, (4.21)

where the Lagrangian of the CWR with the embedded junction LCPW is given by

LCPW =

∫ L

−L
dz

[
c

2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
+
CJ(α+ γ)

2
(∂t∆ψ)2 + γEJ cos

(
∆ψ

φ0

)
(4.22)
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Figure 4.4: Flux qubit coupled to a resonator. (a) Illustration of a four-junction qubit coupled
at the middle z = 0 of a λ/2 coplanar waveguide resonator. (b) Discretized lumped element
representation for the for the λ/2 coplanar waveguide resonator interrupted at the middle with a
four-junction flux qubit.

Lq is the four-junction flux qubit Lagrangian

Lq =
CJ(1 + α)

2
(ϕ̇2

1 + ϕ̇2
2) + αCJ ϕ̇1ϕ̇2

+ EJ

[
cos

(
ϕ1

φ0

)
+ cos

(
ϕ2

φ0

)
+ α cos

(
ϕ1 + ϕ2 − φx

φ0

)
cos

(
∆ψ

φ0

)]
. (4.23)

In this derivation, we have considered the following parameters CJ1 = CJ2 = CJ , EJ1 = EJ2 = EJ ,

CJ3 = αCJ EJ3 = αEJ , and CJ4 = γCJ . Finally, the interaction Lagrangian is given by

Lint = αCJ(∂t∆ψ)(ϕ̇1 + ϕ̇2) + αEJ sin

(
ϕ1 + ϕ2 − φx

φ0

)
sin

(
∆ψ

φ0

)
. (4.24)

Let us consider that the presence of the flux-qubit does not perturb the mode structure of the

CWR. We achieve this considering small Josephson capacitances [Bou+09]. As the capacitive

terms induce Stark-shift on the resonator mode, neglecting this term leads to unperturbed field

mode. Another condition imposed is that the total inductance of the flux qubit is larger than the

inductance of the shared wire on the resonator, i.e., ldz � ∑
k Lk, with LJk = φ2

0/EJk . This fact

physically means that most of the current flowing through the resonator instead of the loop forming

(this assumption is valid for small junctions). Finally, we also assume that ∆ψ/φ0 � 1 [Bou+09].
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Thus, all the terms proportional to ∆ψ/φ0 are up to its lower power. In such a case, we write the

Lagrangian as

LCWR =

∫ L

−L
dz

[
c

2
[∂tψ(z, t)]2 − 1

2l
[∂zψ(z, t)]2

]
+
CJ(α+ γ)

2
(∆∂tψ)2 +

1

2LJ
(∆ψ)2.

Lq =
CJ(1 + α)

2
(ϕ̇2

1 + ϕ̇2
2) + αCJ ϕ̇1ϕ̇2 (4.25)

+ EJ

[
cos

(
ϕ1

φ0

)
+ cos

(
ϕ2

φ0

)
+ α cos

(
ϕ1 + ϕ2 − φx

φ0

)]
. (4.26)

Lint = αEJ sin

(
ϕ1 + ϕ2 − φx

φ0

)
∆ψ

φ0
. (4.27)

Notice that, in the Lint the capacitive terms have been neglected due to the previous condition

imposing small capacitance values. Therefore, the galvanic coupling dominates the coupling in-

teraction. To obtain the Hamiltonian of the CWR, we follow the procedure developed in Chapter

(3.3), where the equation of motion for the flux ψ(z, t) obeys the wave equation. Thus, we write

the flux ψ(z, t) as

ψ(z, t) =

∞∑
`=0

U`(z)G`(t), (4.28)

where U`(z) is given by

U`(z) =

 A` cos(k`(z + L)) −L ≤ z ≤ 0

B` cos(k`(z − L)) 0 ≤ z ≤ L

 , (4.29)

where k` = ω`/v is the wave-vector of the resonator, with v = 1
√
lc being the group velocity of the

wave transmitted on the resonator. G`(t) is a function satisfying G̈(t) = −ω2
`G`(t). Replacing the

expression of ψ(z, t) on the Lagrangian we arrive at

LCPW =
∑
`

[
CΣ`

2
Ġ2
` −

CΣ`ω
2
`

2
G2
`

]
. (4.30)

where CΣ is the effective capacitance defined as

CΣ` =

∫ L

−L
dz c U2

` (z) + CJ(α+ γ)∆U2
` (z) (4.31)
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(a) (b)

Figure 4.5: Coupling strength contributions. Coupling strength associated to the operators σx(a)
and σz (b) as function of the asymmetric Josephson parameter α and as function of the external
magnetic flux φx near from the symmetry point i.e., φx ≈ φ0/2. As shown the figure, close of this
point the contribution is mainly provided by σx.

and the resonator frequency is obtained through the following transcendental equation

k` =
l

LJ
cot(k`L)

(
1− (α+ γ)ω2

`

ω2
p

)
. (4.32)

Here, ωp = 1/
√
LJCJ is the plasma frequency of the fourth junction. The Hamiltonian is obtained

by applying the Legendre transformation HCPW = P Ġ − L, with P` = ∂LCWR/∂Ġ` being the

canonical conjugate momentum.

HCPW =
∑
`

[
P 2
`

2CΣ`

+
CΣ`ω

2
`

2
G2
`

]
. (4.33)

Finally, the quantum Hamiltonian for the resonator is given by

HCPW =
∑
`

~ω`
(
a†`a` +

1

2

)
, (4.34)

Now, we focus on the flux-qubit Lagrangian

Lq =
CJ(1 + α)

2
(ϕ̇2

1 + ϕ̇2
2) + αCJ ϕ̇1ϕ̇2

+ EJ

[
cos

(
ϕ1

φ0

)
+ cos

(
ϕ2

φ0

)
+ α cos

(
ϕ1 + ϕ2 − φx

φ0

)]
. (4.35)
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The realisation of the complete derivation for the flux-qubit Hamiltonian in the Chapter (3.2). With

this derivation, we obtain the following Hamiltonian

Hq =
~ω
2
σz, (4.36)

where,
√

∆2 + E2
0 is the flux-dependent qubit frequency. Finally, numerical calculations showed

that close to the symmetry point φx = φ0/2 the term sin on the interacting Hamiltonian can be

expressed as a σx operator in the effective two-level basis of the flux-qubit. Thus the interacting

Hamiltonian reads

Hint =

∞∑
`=0

g`ϕσ
x(a†` + a`). (4.37)

here, g`ϕ is the galvanic qubit-resonator coupling defined as

g`ϕ =
αEJ∆U`

2φ0

√
~

2CΣ`ω`
〈e| sin

(
ϕ1 + ϕ2 − φx

φ0

)
|g〉 (4.38)

with |g〉, and |e〉 as the ground and first excited state of the flux-qubit, respectively. Thus, in the

single mode limit ` = 0, the quantum Rabi Hamiltonian can be written as

H =

∞∑
`=0

~ω`
(
a†a+

1

2

)
+

~ωq

2
σz +

∞∑
`=0

~gϕσx(a†` + a`). (4.39)

The first experimental realisation of a circuit quantum electrodynamics device operating at the

ultrastrong coupling regime (USC) was reported in [Nie+10]. The system is constituted by a λ

transmission line resonator made of Niobium, where a part of it was replaced by a narrow alu-

minium strip interrupted by a large area junction. Moreover, the flux qubit is formed by a supercon-

ducting loop embedded with three Josephson junctions, which is threaded by external magnetic

flux to tune the qubit frequency. A false scanning electron microscope (SEM) image for the chip

is shown in Fig. (4.4)(a). Spectroscopy on the chip permits to obtain the values for the internal

system parameters of the system, demonstrating the system operates at the ultrastrong coupling

regime. For instances, in this work the system to be considered is the same as the showed in

Eq. (4.39) for ` = 0, 1, 2 modes. The experimental value obtained by the spectroscopy are given

by ω0 = 2π × 2.782 GHz, ω1 = 2π × 5.357 GHz and ω2 = 2π × 7.777 GHz, Ω = 2π × 2.25 GHz,

g010
ϕ = 2π × 314 MHz, g011

ϕ = 2π × 636 MHz and g012
ϕ = 2π × 568 MHz. Hence, the ratio de-

fined as r` = |g01`
ϕ /ω`| are the following: r0 = 0.112, r1 = 0.118 and r2 = 0.073. These ratios

51



(a) (b)

Figure 4.6: Experimental evidence for breaking of the rotating-wave approximation. (a) Cavity
spectroscopy as function of the external magnetic flux. Black dashed lines stand for the energy
spectrum of the Hamiltonian (4.39). Whereas green |e, 1, 0, 0〉, light blue |e, 0, 1, 0〉 and dark blue
|e, 0, 1, 0〉 (|g, 2, 0, 0〉) stand for the energy levels of the Jaynes-Cummings model, respectively.
(b) enlarged level crossing produced by the states |e, 1, 0, 0〉 and |e, 0, 1, 0〉. These states are
generated from the counter rotating terms presents on the quantum Rabi Hamiltonian (4.39). The
figure has been extracted from [Nie+10] and slightly modified.

demonstrate that the system is operating on the ultrastrong coupling regime. This experimental

realisation consists into the study the energy spectrum of the Hamiltonian in Eq. (4.39) by measur-

ing the power transmission on the resonator as a function of the external magnetic flux as shown

in Fig. (4.6). The spectroscopy for this transmission shows that there are lines on the energy

spectrum which does not appear on the Jaynes-Cummings model. This contribution corresponds

to generation of two excitations on the system, i.e., one excitation on the qubit and other on the

resonator or, additionally, two excitations are generated on the resonator. This process appears

due to the presence of the counter-rotating terms on the quantum Rabi model, but not on the

Jaynes-Cummings Hamiltonian, evidencing that there are unexplored physics beyond the rotating

wave approximation.
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Chapter 5

Incoherent-mediator for quantum

state transfer in the ultrastrong

coupling regime

We study quantum state transfer between two qubits coupled to a common quantum bus that

is constituted by an ultrastrong coupled light-matter system. By tuning both qubit frequencies

on resonance with a forbidden transition in the mediating system, we demonstrate a high-fidelity

swap operation even though the quantum bus is thermally populated. We discuss a possible

physical implementation in a realistic circuit QED scheme that leads to the generalized Dicke

model. This proposal may have applications on hot quantum information processing within the

context of ultrastrong coupling regime of light-matter interaction.

5.1 Introduction

The exchange of information between nodes of a quantum network is a necessary condition for

large-scale quantum information processing (QIP) and networking. Many physical platforms have

been proposed to implement high-fidelity quantum state transfer (QST) such as, coupled cavi-

ties [Cir+97; ECZ97; OIK08; Fel+14], spin chains [Chr+04; Chr+05], trapped ions [CZ95; HRB;

SWM10], photonic lattices [PL+13], among others. In the majority of cases, a necessary con-

dition to carry out the transfer protocol is accessing to a highly controllable mediator. However,

several protocols have been proposed to perform QST even though the mediator system is not
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controlled [Bos03; Yao+11], or it is initialized in a thermally populated state [SMFZ99; SM99;

SM00; Cas+10b; Sch+17].

Likewise, the state-of-the-art quantum technologies has also proven useful for other quantum

information tasks such as quantum computing [Lad+10] and quantum simulations [GAN14]. As

important representatives of quantum devices we can mention superconducting circuits [CW08]

and circuit quantum electrodynamics (QED) [Bla+04; CW08; Chi+04; SG08]. These technologies

have also pushed forward to achieve the ultrastrong coupling (USC) [Bou+09; Nie+10; FD+10;

FD+16b; BA17; FD+16a; Bau+16] and deep strong coupling (DSC) [Cas+10a; Yos+16] regimes

of light-matter interaction, where the coupling strength becomes comparable to or larger than the

frequencies of the cavity mode and two-level system. In this case, the light-matter coupling is

well described by the quantum Rabi model (QRM) [Rab36; Bra11] and features a discrete parity

symmetry. It has been proven that the above symmetry may be useful for quantum information

tasks in the USC regime [NC11; Rom+12; Kya+15b; Kya+15a; Wan+16].

We propose a protocol for performing high-fidelity QST between qubits coupled to a com-

mon mediator constituted by a two-qubit quantum Rabi system (QRS) [RLM13; Guo+14], see

Figure.5.1. The QST relies on the tuning of qubit frequencies on resonance with a forbidden tran-

sition of the QRS, provided by the selection rules imposed by its parity symmetry. We demonstrate

that high-fidelity QST occurs even though the QRS is thermally populated and the whole system

experiences loss mechanisms. We also discuss a possible physical implementation of our QST

protocol for a realistic circuit QED scheme that leads to the generalized Dicke model [RCLV15]

as mediating system. This proposal may bring a renewed interest on hot quantum computing

[SMFZ99; SM99; SM00] within state-of-art light-matter interaction in the USC regime.

5.2 The model

Our proposal for quantum state transfer is schematically shown in Figure. 5.1. We consider a pair

of two-level systems with transition frequencies ωq,i (i = 1, 2), ultrastrongly coupled to a single

cavity mode of frequency ωcav. This situation is described by the two-qubit quantum Rabi model

[RLM13; Guo+14]

HQRS = ~ωcava
†a+

N=2∑
i=1

~ωq,i
2

σzi + ~giσxi (a† + a). (5.1)
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ωcav

ωq
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ωq

g

ωω
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Figure 5.1: Schematic representation of the model. Two qubits with frequency gaps ω1 and
ω2 are coupled to a QRS via dipolar coupling with strengths λ1 and λ2, respectively. The QRS is
constituted by a pair of two-level systems ultrastrongly coupled to a single cavity mode of frequency
ωcav.

Here, a(a†) is the annihilation (creation) bosonic operator for the cavity mode. The operators

σzi and σxi stand for Pauli matrices describing each two-level system. Also, ωcav, ωq,i, and gi,

are the cavity frequency, ith qubit frequency, and ith qubit-cavity coupling strength, respectively.

Furthermore, two additional qubits with frequency gaps ωn (n = 1, 2), are strongly coupled to the

QRS through the cavity mode with coupling strengths λn. The Hamiltonian for the whole system

depicted in Figure. 5.1 reads

H = HQRS +

N=2∑
j=1

~ωj
2
τzj + ~λjτxj (a† + a), (5.2)

where τx,zj are Pauli matrices associated with the additional qubits. In what follows, we will discuss

about the parity symmetry of the two-qubit quantum Rabi model (5.1), and their corresponding

selection rules.

5.3 Selection rules in the two-qubit quantum Rabi model.

An important result in quantum physics are the selection rules imposed by the electric and mag-

netic dipole transitions. Similarly, the parity symmetry (Z2) of the Hamiltonian (5.1) imposes

selection rules for state transitions. The Z2 symmetry can be seen if we replace σxi → −σxi
and (a† + a) → −(a† + a) in the Hamiltonian (5.1) such that it remains unchanged. In other

words, this symmetry implies the existence of a parity operator P that commutes with the Hamil-

tonian, [HQRS,P] = 0. In this way both operators can be simultaneously diagonalized in a basis
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{|σ, p〉}∞σ=0. In particular, for the two-qubit quantum Rabi model Eq. (5.1), the parity operator reads

P = σz1 ⊗ σz2 ⊗ eiπa
†a, such that P|σ, p〉 = p|σ, p〉, with p = ±1, and HQRS|σ, p〉 = ~νσ|σ, p〉, where

νσ is the σth eigenfrequency.

The selection rules associated with the parity symmetry appear when considering a cavity-like

driving, proportional to a†+a, or qubit-like driving∝ σx or σz [FD+16a; Wan+16]. We are interested

in the former case since each qubit in Figure. 5.1 couples to the QRS via the field quadrature

X = a† + a. It is noteworthy that for the single-qubit quantum Rabi model [Bra11], it is possible to

demonstrate that matrix elements qσ,σ′ = 〈σ, p|(a† + a)|σ′, p′〉 are different from zero when p 6= p′,

whereas qσ,σ′ = 0 when p = p′ [Fel+15]. In addition, for the two-qubit quantum Rabi model we

need to take into account additional features. In this case, if one considers identical qubits and

coupling strengths in the Hamiltonian (5.1), the spectrum features an invariant subspace formed

by tensor products of pseudo spin and Fock states {| ↓, ↑, N〉, | ↑, ↓, N〉}, whose eigenstates are.

|φN 〉 =
1√
2

(
| ↓↑〉 − | ↑↓〉

)
|N〉. (5.3)

This is a dark state (DS) where the spin singlet is decoupled from the cavity mode [MCCM14;

Hao+15; Sol+17]. Figure 5.2(a) shows the energy spectrum of the Hamiltonian (5.1) for identical

qubits (ωq,1 = ωq,2) as a function of the coupling strength g1 = g2 = g. Blue (dot-dashed) lines

stand for states with parity p = +1, while red (continuous) for states with parity p = −1. The dark

states (5.3) appear with constant energies whose gaps correspond to the cavity mode frequency.

The selection rules in the two-qubit quantum Rabi system need to take into account the emergence

of dark states. In this case, each DS has definite parity as shown in Figure. 5.2(a); however, the

matrix elements between a DS and remaining states are null, XφNk = 〈φN |(a†+a)|σ, p〉 = 0, since

states |σ, p〉 can be written as linear superpositions of products of symmetric states for the pseudo

spins and Fock states, that is, |σ, p〉 =
∑∞
N=0

√
N !{aN (| ↑↑〉 ± (−1)N | ↓↓〉) + bN (| ↑↓〉 ± (−1)N | ↓↑

〉)}|N〉, where ± stands for parity p = ±1 [DHC15; Wan+14]. In the light of the above forbidden

transitions, we will show that they become a key feature for our quantum state transfer protocol.

5.4 Parity assisted excitation transfer

We study the QST between two qubits that are coupled to a common QRS system [cf. Figure. 5.1].

We focus on the situation where frequencies of the leftmost and rightmost qubits are resonant with
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Figure 5.2: Energy Spectrum of the two-qubit quantum Rabi system. (a) Energy spectrum of
the Hamiltonian (5.1) with parameters ωq,1 = ωq,2 = ωcav, as a function of the coupling strength g.
Blue (dot-dashed) lines stand for states with parity p = +1. Red (continuous) lines stand for states
with parity p = −1. The straigth lines in the spectrum stand for dark states |φN 〉. (b) Schematics
of the level structure at g = 0.3 ωcav corresponding to the vertical solid line in (a). It is shown
the allowed and forbidden transitions ruled by the parity symmetry of the two-qubit quantum Rabi
model.

a forbidden transition of the QRS. For instance, if we consider the case g = 0.3 ωcav as denoted

by the vertical solid line in Figure. 5.2(a), we choose ω1 = ω2 = ν3 − ν0. It is clear that the matrix

element X03 = 〈0,+|a+a†|3,+〉 = 0 because states |0,+〉 and |3,+〉 have parity p = +1. Also, the

matrix element X02 = 0 since |2,−〉 = |φ0〉 is a dark state. The allowed and forbidden transitions

for the lowest energies of the Hamiltonian (5.1), for g/ωcav = 0.3, are schematically shown in

Figure. 5.2(b).

In view of the above conditions, and considering the QRS initialized in its ground state, we

realize that the only transmission channel that would participate in a QST protocol between qubits

corresponds to the first excited state of the QRS, since the matrix element X01 6= 0, as |0,+〉 and

|1,−〉 have opposite parity. However, both qubits are far-off-resonance with respect to this allowed

transition. In this case, one can demonstrate that the QST occurs in a second-order process, as

qubits interact dispersively with the QRS resulting in an effective qubit-qubit interaction. The latter

can be seen in the spectrum of the Hamiltonian (5.2), as depicted in Figure. 5.3(a). Specifically,

around the region E/~ωcav ≈ 1.2386 appears an avoided level crossing, enlarged in Figure. 5.3(b),

where states |0,+〉| ↑↓〉 and |0,+〉| ↓↑〉 hybridize to form maximally entangled states well approx-

imated by |0,+〉(| ↑↓〉 + | ↓↑〉)/
√

2 and |0,+〉(| ↑↓〉 − | ↓↑〉)/
√

2. This hybridization resembles the

two-body interaction mediated by a single-qubit quantum Rabi model [Kya+17]. The effective qubit-
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≈ |ψ0 | ↑↓ |ψ0 |

Figure 5.3: Spectrum of the complete model. (a) Energy differences from the spectrum of Hamil-
tonian (5.2), as a function of the rightmost qubit frequency ω2. Blue (dot-dashed) lines stand for
states with parity p = +1, while red (continuous) lines stand for states with parity p = −1. At fre-
quency ω2 = ω1 an avoided energy crossing appears. (b) Enlarged view of the energy spectrum
shown in (a) around the region ω2 = ω1 = ν3 − ν0 . The numerical calculation was performed with
the same parameters used in Figure. 5.2.

qubit interaction can be obtained from the total Hamiltonian (5.2) via a dispersive treatment beyond

rotating-wave approximation [Kya+17; Zue+09]. In this case, the effective qubit-qubit interaction

reads

Heff = H0 +
~
2
|χ10|2Zp ⊗ S12, (5.4)

where

|χ10|2 = |〈0,+|(a† + a)|1,−〉|2 (5.5)

Zp = |1,−〉〈1,−| − |0,+〉〈0,+| (5.6)

S12 = λ1λ2

(
1

µ1
10

+
1

µ2
10

− 1

∆1
10

− 1

∆2
10

)
τx1 τ

x
2 + 2

2∑
j=1

λ2
j

(
τ+
j τ
−
j

∆j
10

−
τ−j τ

+
j

µj10

)
, (5.7)

and τ±n = (τxj ± iτyj )/2. The detunings are defined as ∆j
10 = ωj − ν10 and µj10 = ωj + ν10,

where ωj corresponds to the jth qubit frequency that interacts with the QRS, see Figure. 5.1,

and ν10 stands for the frequency difference between the two lowest energy states of the QRS.

Figure 5.4(a) shows the population inversion between states |0,+〉| ↑↓〉 and |0,+〉| ↓↑〉 calculated

from the full Hamiltonian (5.2), and from the dispersive Hamiltonian (5.4), see Figure. 5.4(b). In
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Figure 5.4: Population evolution. (a) Population inversion of the states |ψ0〉| ↑↓〉 and |ψ0〉| ↓↑〉,
numerically calculated from the ab initio model (5.2). (b) Population inversion calculated from the
effective Hamiltonian (5.4). These numerical calculations have been performed with parameters,
ωq,i = ωcav, g = 0.3 ωcav, ω1 = ω2 = ν3 − ν0 and λ1 = λ2 = 0.02 ωcav.

both cases, the qubit-qubit exchange occurs within a time scale proportional to the inverse of the

effective coupling constant Jeff = |χ10|2λ1λ2(1/µ1
10 + 1/µ2

10 − 1/∆1
10 − 1/∆2

10). For parameters,

ωq,i = ωcav, g = 0.3 ωcav, ω1 = ω2 = ν3 − ν0 and λ1 = λ2 = 0.02 ωcav, we obtain |χ10| = 1.0325,

µ1
10 = µ2

10 = 1.7632 ωcav and ∆1
10 = ∆2

10 = 0.7141 ωcav. These values lead to an effective coupling

strength 2Jeff ≈ 0.0011 ωcav. In addition, if we consider typical values for microwave cavities such

as ωcav = 2π × 8.13 GHz [FD+16a], the excitation transfer happens within a time scale of about

t = π/2Jeff ≈ 56 [ns].

Additionally, we also study quantum correlations in our system. Figure 5.5 shows the Entangle-

ment of Formation (EoF) for the subsystem composed by the leftmost and rightmost qubits, and

the von Neumann entropy, S(ρ), for the reduced density matrix of the QRS. S(ρ) shows a negligi-

ble correlation between the bipartition composed by QRS and the additional qubits. This behavior

can be predicted from the effective Hamiltonian (5.4), which shows an effective qubit-qubit inter-

action while it is diagonal in the QRS basis. Therefore, the QRS will not evolve and the quantum
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Figure 5.5: Correlation evolution. (a) Entanglement dynamics for the reduced system composed
by the leftmost and rightmost qubits, and the von Neumann entropy S(ρQRS) for the reduced QRS
system, numerically calculated from the ab initio model (5.2). (b) Entanglement of formation and
von Neumann entropy numerically calculated from the effective Hamiltonian (5.4). We have used
the parameters from Figure. 5.4.

correlations between it and additional qubits is negligible. At the same time, the EoF between the

leftmost and rightmost qubits has an oscillating behavior whose minimum value is reached when

the excitation transfer has been completed.

5.5 Incoherent mediator for quantum state transfer

Notably, the above described mechanism allows us for quantum state transfer between qubits even

though the QRS is initially prepared in a thermal state at finite temperature. Let us describe how

our system governed by Eq. (5.2) is initialized in a thermally populated state. Since the frequencies

of the additional qubits are larger than the lowest energy transition of the QRS, we should expect

that thermal population associated with both qubits are concentrated only in their ground states. In

order to ascertain the latter, we compute the fidelity F between the Gibbs state obtained from the
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Figure 5.6: Fidelity of the QST process. Time-evolution of the QST fidelity FQST between the
states |χ〉 = cos θ| ↑〉 + sin θeiφ| ↓〉 and ρQ2(t), averaged over the Bloch sphere. We have consid-
ered the QRS initialized in a thermal state at T = 100mK.

Hamiltonian (5.2), ρGibbs = e(−H/kBT )/Z, where Z =
∑
m exp(−~εm/kBT ) is the partition function,

and the probe state defined by ρp = ρQRS
th ⊗ | ↓↓〉〈↓↓ |, where ρQRS

th is the Gibbs state for the QRS.

Notice that ~εj corresponds to the jth eigenvalue of the Hamiltonian (5.2), H|m〉 = ~εm|m〉. Taking

parameters from Figure. 5.4 and T = 100 mK, we obtain the fidelity F = tr(ρGibbsρp) = 0.9951.

Therefore, the Gibbs state is a tensor product between the additional qubits in their ground states

and the QRS in an thermal state. For the purpose of QST of an arbitrary qubit state, we need

to excite either the leftmost or rightmost qubit, see Figure. 5.1. This can be done by applying

an external driving on the leftmost (rightmost) qubit Hd(t) = ~Ω cos(νt + φ)τx1 (τx2 ) resonant with

the qubit frequency gap ω1 (ω2) and far off-resonance with both the QRS and rightmost (leftmost)

qubit. For example, one can initialize the whole system in the state

ρQST = ρQRS
th ⊗ |χ〉〈χ| ⊗ | ↓〉〈↓ |, (5.8)
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where |χ〉 = cos θ| ↑〉 + sin θeiφ| ↓〉. We study the QST under dissipative mechanisms in a way

that is consistent with a circuit QED implementation based on a flux qubit coupled to an on-chip

microwave cavity in the USC regime [Nie+10], and including the effect of a finite temperature.

The treatment that we use has also been applied to a recent implementation of the QRM at finite

temperature [FD+16a]. Moreover, the leftmost and rightmost qubits could be implemented by

means of transmon qubits [Koc+07; Sai+14] coupled to the edges of the microwave cavity. The

dissipative dynamics is governed by the microscopic master equation in the Lindblad form [BGB11]

dρ(t)

dt
=

i

~
[ρ,H] +

∑
σ,σ′>σ

(Γσ,σ
′

X + Γσ,σ
′

γ )D[|σ, p〉〈σ′, p′|]ρ+

N=2∑
j=1

γjD[τxj ]ρ+

N=2∑
j=1

γφjD[τzj ]ρ,

(5.9)

where the HamiltonianH is given by Eq. (5.2), and D[O]ρ = 1/2(2OρO†−ρO†O−O†Oρ). Here, γj

corresponds to the relaxation rate for the external qubit and γφj stands for the qubit pure dephasing

rate. Also, Γσ,σ
′

X is the dressed photon leakage rate for the resonator, Γσ,σ
′

γ corresponds to the

dressed qubit relaxation rate for the qubit-cavity system, both dressed rates are defined as follows

Γσ,σ
′

X =
κ

ωcav
νσ,σ′ |Xσ,σ′ |2 Γjkγ =

γ

ωq,i
νσ,σ′ |σxσ,σ′ |2, (5.10)

where κ and γ are the bare decay rates for the cavity mode and the two-level systems that belong

to the QRS, νσ,σ′ = νσ − ν′σ, and |Xσ,σ′ |2 = |〈σ, p|(a + a†)|σ′, p′〉|2, |σxjk|2 = |〈σ, p|σxi |σ′, p′〉|2.

The QST fidelity FQST = 〈χ|ρQ2(t)|χ〉, where ρQ2(t) is the density matrix of the rightmost qubit,

is numerically calculated from Eq. (5.9) for 4000 input states |χ〉, uniformly distributed over the

Bloch sphere. Figure 5.6 shows the evolution of FQST as a function of time and for a system

temperature of T = 100 mK. As the QST time is shorter than any decay rate in the system, the

dissipation should not affect the performance of QST. We see that the main detrimental effect

on QST is produced by the distribution of the thermally populated states in the mediator. The

numerical calculations have been performed for the QRS parameters given in Ref. [FD+16a], that

is, κ/2π = 0.10 MHz, γ/2π = 15 MHz, and for the leftmost and rightmost qubits we choose

γj/2π = 0.48 MHz, γφj/2π = 0.15 MHz given in Ref. [Sai+14]. At temperature T = 100 mK we

obtain maximum fidelity of about FQST = 0.9785. It is worth mentioning that the validity of our QST

protocol relies on the range of temperatures in which the system can be initialized as a product

state ρp.
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5.6 Conclusion

We have shown that a system composed by two qubits connected to an incoherent QRS mediator,

allows us to carry out high fidelity QST of single-qubit states even though the mediator system

is in a thermally populated state. The QST mechanism involves the tuning of qubit frequencies

resonant to a parity forbidden transition in the QRS such that an effective qubit-qubit interaction

appears. Numerical simulations with realistic circuit QED parameters show that QST is successful

for a broad range of temperatures. We have also discussed a possible physical implementation of

our QST protocol for a realistic circuit QED scheme that leads to the generalized Dicke model. Our

proposal may be of interest for hot quantum information processing within the context of ultrastrong

coupling regime of light-matter interaction.
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Chapter 6

Parity-assisted generation of

nonclassical states of light in

superconducting circuits

We propose a method to generate non-classical states of light in multi-mode microwave cavi-

ties. Our approach considers two-photon processes that take place in a system composed of two

extended cavities and an ultrastrongly coupled light-matter system. Under specific resonance con-

ditions, our method generates, in a deterministic manner, product states of uncorrelated photon

pairs, Bell states, and W states. We demonstrate improved generation times when increasing the

number of multi-mode cavities, and prove the generation of genuine multipartite-entangled states

when coupling an ancillary system to each cavity. Finally, we discuss the feasibility of our proposal

in superconducting circuits.

6.1 Introduction.

The state-of-the-art of devices exhibiting quantum behaviour has grown extensively in the last

two decades. Remarkable platforms such as superconducting circuits [SG08; YN11; HTK12;

DS13] and circuit quantum electrodynamics (QED) [SG08; YN11; HTK12; DS13; Lan13; Sch07;

Bis10; Bla+04] have allowed the implementation of microwave quantum photonics [Nak12; HJ+16;

Gu+17], where superconducting electrical circuits mimic the behavior of atoms and cavities [Orl+99;

Mar+02; DWM04; Koc+07; Göp+08]. Here, the capability of tailoring internal circuit parameters to
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obtain devices with long coherence times and switchable coupling strengths have allowed repro-

ducing quantum optics experiments such as electromagnetically induced transparency [Abd+10],

and photon blockade [Lan+11; Hof+11; Eic+14], to name but a few. A distinctive aspect of mi-

crowave photonics are the inherent nonlinearities coming from Josephson junction devices that

makes possible to build photonic crystals with Kerr and Cross-Kerr nonlinearities much larger than

the one observed in optical devices [Ber+10; BGB10; Eic+11; Bou+12; Har+12], thus enhancing

processes such as parametric down conversion [Mar07; Kos09; Liu+14; SB+16], and the genera-

tion of non-classical states of light [Yur+89; Eve+04; Zag+08; Yur+88; MG05; DQB14]. Likewise,

the notable features of superconducting circuits have also triggered a bunch of proposals for mi-

crowave photon generation in systems composed of a large number of cavities. In this context,

it is possible to find proposals for the generation of entangled photon states such as NOON and

MOON [Str12; Zha+16; WK10; SJS10; Wan+11; SYZ14; Xio+15] states, studies of correlated

photons emitted from a cascade system [Gas+17], the implementation of a CNOT gate between

qubits encoded in a cavity [CI+18], among other applications [Ros+18; Nar+16; Kur+18].

On the other hand, circuit QED has also made possible to achieve light-mater coupling strengths

such as the ultrastrong (USC) [Bou+09; Nie+10; FD+10; FD+16b; BA17; FD+16a; Bau+16] and

deep-strong coupling regime (DSC) regimes [Cas+10a; Yos+16]. In both cases, as the coupling

strength between the light and matter becomes comparable (USC) or larger than the frequency

of the field mode (DSC), the rotating wave approximation breaks down and the simplest model

that describes the physical situation is the quantum Rabi model (QRS) [Rab36; Bra11]. This

model exhibits a discrete parity symmetry and an anharmonic energy spectrum that provide a set

of resources for quantum information tasks and quantum simulations [NC11; Rom+12; Kya+15b;

Fel+15; Kya+15a; Wan+16; AA+18].

Based on the latest developments in superconducting circuits, here we propose a method to

generate non-classical states of light in multi-mode microwave cavities. Our approach considers

two-photon processes that take place in a system composed of two extended cavities and an

ultrastrongly coupled light-matter system hereafter called quantum Rabi system (QRS). Under

specific resonance conditions, our method allows a deterministic generation of product states of

uncorrelated photon pairs, Bell states, and W states of photons with different frequencies. We

demonstrate improved generation times when increasing the number of multi-mode cavities, and

show the generation of genuine multipartite-entangled states when coupling an ancillary system

to each cavity.

This paper is organized as follows: In the section 6.2 we introduce our physical scheme. In
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section 6.3, we discuss about the main aspects of the physics of QRS, that is, its parity symmetry

and the underlying selection rules for states transitions. In section 6.4, we discuss on the two-

photon processes presented in our physical system, and the generation of non-classical states of

light. In section 6.5, we show that our model allow generating copies density matrices. In section

6.6, we study swapping processes for the generation of genuine multipartite entanglement. Finally,

in sec. 6.7, we present our concluding remarks.

6.2 The Model

Let us consider a two-level system of frequency ωq interacting with a quantized electromagnetic

field mode of frequency ωcav in the USC regime. This system is described by the quantum Rabi

Hamiltonian [Rab36; Bra11] (~ = 1)

HQRS = ωcava
†a+

ωq
2
σz + gσx(a† + a). (6.1)

Here, a†(a) is the creation (annihilation) boson operator for the field mode, the operators σx and σz

are the Pauli matrices describing the two-level system, and g is the light-matter coupling strength.

In addition, N multi-mode resonators [EW13; Sun+15], each supporting M = 2 modes of fre-

quencies ω`1 and ω`2, are coupled to the edges of the QRS through field quadratures. Notice that

each mode couples to the QRS with coupling strengths J`1 and J`2, respectively, see Fig.6.1. This

physical situation will be described by the Hamiltonian

H = HQRS +Hc +HI , (6.2)

Hc =

N∑
`=1

(ω`1b
†
`b` + ω`2c

†
`c`), (6.3)

HI =

N∑
`=1

[
J`1(b†` + b`) + J`2(c†` + c`)

]
(a+ a†), (6.4)

where b†`(b`) and c†`(c`) are the creation (annihilation) boson operators for the first and second field

mode of the `th cavity, respectively. Notice that the coupling strength between resonators J`1,2

can be several order of magnitude smaller than ω`1,2 [Und+12]. Hence, the counter-rotating terms

present in Eq. (B.3) can be neglected through the rotating wave approximation (RWA) leading to
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Figure 6.1: QRS energy spectrum. (a) Energy spectrum of the Hamiltonian in Eq. (6.1) as a
function of the coupling strength g. Blue dashed lines stand for states with parity p = +1. Orange
continuous lines correspond to states with parity p = −1. (b) Diagram of the energy levels at
g = 0.6 ωcav. In these numerical calculations we use ωq = 0.8 ωcav.

the following interaction Hamiltonian

HI =

N∑
`=1

[
(J`1b` + J`2c`)a

† + (J`1b
†
` + J`2c

†
`)a
]
. (6.5)

In what follows, we will discuss the features of the energy spectrum of the QRS, that is, its anhar-

monicity and the internal symmetry arising in the USC regime.

6.3 Parity symmetry Z2 and selection rules

The energy spectrum of the QRS presents interesting features which have proven useful in per-

forming quantum information processing [NC11; Rom+12; Kya+15b; Fel+15; Kya+15a; Wan+16].

These features correspond to the anharmonicity of the energy levels and the selection rules im-

posed by the Z2 symmetry arising in the USC regime. In Fig. 6.1 we show the first four energy lev-

els of the QRS as a function of g/ωcav, where we see an anharmonic energy spectrum. Moreover,

in the QRS it is possible to define the parity operator P = −σz ⊗ eiπa†a which has discrete spec-

trum p = ±1. Notice that P commutes with the QRS Hamiltonian, [HQRS,P] = 0, thus enabling the

diagonalization of both operators in a common basis {|σ, p〉}∞σ=0. We label each quantum state re-

garding two quantum numbers, σ corresponds to the energy level while p denotes its parity value.

In Fig. 6.1 states with parity +1(−1) are denoted by the continuous orange (dashed blue) line. As
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Figure 6.2: Population evolution. Population evolution for the ab initio model Eq. (6.2) for the
initial state |Ψ(0)〉 = |2,+〉⊗N,M

`,n |0n` 〉 for the cases N = 1 (a), N = 2 (b), N = 3 (c), and
N = 4 (d) multi-mode cavities. Blue continuos line is the evolution of the initial state |Ψ(0)〉. (a)
Orange dotted line stands the population of |Ψ〉S = |0,+〉 ⊗ |1ω1〉 ⊗ |1ω2〉. (b) Green dotted line
stands for the population of |Ψ〉B = |0,+〉 ⊗ |Ψ+

ω1
〉 ⊗ |Ψ+

ω2
〉, and (c) red dotted line stands for

|Ψ〉W = |0,+〉 ⊗ |Wω1
〉 ⊗ |Wω2

〉. The parameters for these numerical calculations are described in
the main text.

a consequence, the Hilbert space of the QRS is divided into two parts, the even and the odd parity

subspaces. This allows, depending on the kind of driving, the possibility of connecting states with

different or equal parity. For instance, it has been proven that drivings like HD ∼ (a† + a) and

HD ∼ σx connect states belonging to different subspaces [Wan+16], this happens because the

matrix element 〈σ,±|HD|σ′,∓〉 6= 0. Moreover, for a driving like HD ∼ σz, only states with equal

parity can be connected since the matrix element 〈σ,±|HD|σ′,±〉 6= 0.
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6.4 Two photon process mediated by the quantum Rabi model

Here we propose the implementation of a two-photon process mediated by the QRS, which relies

on its anharmonicity and the selection rules previously discussed. In particular, we provide specific

resonance conditions between multi-modes cavities and the QRS to achieve the phase matching

condition analogue to the usual parametric down-conversion process in optical systems.

Let us consider the following set of parameters for the QRS ωq = 0.8 ωcav and g = 0.6 ωcav.

In this case, as shown in Fig 6.1, the first three energy levels form a cascade Ξ system similar to

Rydberg atoms studied in cavity quantum electrodynamics [BRH87]. The ground and the second

excited state have parity p = +1, while the first excited state has parity p = −1 (see Fig 6.1(b)).

According to with the type of interaction between the multi-mode cavities with the QRS (c.f. Eq.

(B.3)), a single photon will not be able to produce a transition between the second excited state

|2,+〉 with the ground state |0,+〉 since it is forbidden by parity. However, these states can be

connected through a second-order process. The latter may occur when the sum of frequencies

of the modes belonging to a cavity matches that of the energy transition between the ground and

the second excited state of the QRS, i.e. ω`1 + ω`2 = ν20. Moreover, the frequency of each mode

must be far-off-resonance with respect to the frequency of the first excited state ω`1,2 � ν10. Under

these conditions, the intermediate level can be adiabatically eliminated leading to the effective

Hamiltonian

H`eff = HQRS +Hc +

N∑
`,`′=1

J `′` (b†`c
†
`′S− + b`c`′S+), (6.6)

which describes simultaneous two-photon processes in both cavities. Here, S+ = |2,+〉〈0,+|

corresponds to the ladder operator of the QRS in the effective two-level basis. Furthermore, the

effective coupling strength J `′` is defined as follows

J `′` = J`1J
`′

2 χ01χ21

[
1

∆2
10

+
1

∆2
21

]
. (6.7)

Here, we define the matrix element of the operator a in the QRS basis as χ±kj = 〈k,+|a|j,−〉 and

the QRS-mode detuning ∆1,2
kj = ω`1,2 − νkj . The Hamiltonian in Eq. (6.6) gives rise to several

parametric down conversion processes mediated by the QRS, i.e., by starting with one excitation

on the QRS of energy ν20, it may produce a pair of photons of frequencies ω1 and ω2. The photons

generated by this scheme will distribute on the multi-mode cavities according to the relation ω`1 +

ω`
′

2 = ν20. Depending on the number of cavities N , this condition enables us to generate two
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uncorrelated single-photons (N = 1), or producing identical entangled states of different frequency

such as Bell states (N = 2) or W states (N ≥ 3). For the cases, N = {1, 2, 3} the effective

Hamiltonians read

H1
eff = J 1

2

[
b†1c
†
1S− + b1c2S+

]
. (6.8a)

H2
eff = J 1

2

[
b†1c
†
1 + b†2c

†
2 + b†1c

†
2 + b†2c

†
1

]
S− + H.c. (6.8b)

H3
eff = J 1

2

[
b†1c
†
1 + b†2c

†
2 + b†3c

†
3 + b†1c

†
2 + b†1c

†
3 + b†2c

†
1 + b†2c

†
3 + b†3c

†
1 + b†3c

†
2

]
S− + H.c. (6.8c)

The protocol works as follows: we initially consider the entire system in its ground state i.e.,

|Ψ(0)〉 = |0,+〉⊗N
`,`′ |0`, 0`′〉. Afterwards, one may excite the QRS with a microwave pulse with

frequency ν = ν20. This interaction can be modeled by the Hamiltonian HD = Ω cos(ν20t)σ
z. No-

tice that HD preserves the Z2 symmetry of the QRS, thus enabling transitions between states of

equal parity. The state of the system, after an interaction time t = π/Ω, is given by |Ψ(π/Ω)〉 =

|2,+〉⊗N
`,`′ |0`, 0`′〉. Then, the system evolves under the Hamiltonian (6.2) for a time tS = π/(2J 1

2 ),

tB = π/(4J 1
2 ), or tW = π/(6J 1

2 ), for generating uncorrelated single photons, pair of Bell states, or

pair of W states, respectively. As a result, the QRS excitation generates two photons distributed on

the cavities satisfying the relation ω`1 + ω`
′

2 = ν20. The wavefunctions of the system after algebraic

manipulation read

|Ψ(π/Ω + π/2J 1
2 )〉S = |+, 0〉 ⊗ |1ω1

〉 ⊗ |1ω2
〉, (6.9a)

|Ψ(π/Ω + π/4J 1
2 )〉B = |+, 0〉 ⊗ |Ψ+

ω1
〉 ⊗ |Ψ+

ω2
〉, (6.9b)

|Ψ(π/Ω + π/6J 1
2 )〉W = |+, 0〉 ⊗ |Wω1

〉 ⊗ |Wω2
〉, (6.9c)

where |Ψ+
ωn〉 is the Bell state for photons of frequency ωn distributed over different resonators, that

is, |Ψ+
ωn〉 = 1√

2
[|1ωn〉|0ωn〉 + |0ωn〉|1ωn〉]. Also, the state |Wωn〉 stands for a W state of a single

photon of frequency ωn distributed over different cavities.

In Fig. 6.2 we show the numerical calculations of the above mentioned protocol. Here, we com-

pute the population evolution of states |Ψ(0)〉, and states |Ψ〉S , |Ψ〉B , and |Ψ〉W given in Eqs. (6.9).

The parametric interaction can produce either uncorrelated photon states of different frequency or

identical entangled states of modes belonging to distinct cavities. Furthermore, the simulations

show that the state generation time decreases as 1/N . This can be explained by analysing the

structure of Eqs. (6.8). As the effective Hamiltonians describe a quantum dynamics in a reduced

2-dimensional Hilbert space, the matrix elements between the initial state |Ψ(0)〉 and |Ψ〉S , |Ψ〉B ,
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Figure 6.3: Density matrix field mode. Reconstructed density matrices associated with the
modes ω1, i.e. ρω1 , for the case there the system is composed by N = 1 (a), N = 2 (b) and
N = 3 (c) multimode cavities. At the specific state generation times tS , tB , and tW , the dominant
amplitudes correspond to the states |1ω1

〉, |Ψ+
ω1
〉 and |Wω1

〉, respectively.

and |Ψ〉W are proportional to the normalization of the desired state, that is,
√
N ×

√
N , where

N = 1 stands for single photons, N = 2 for Bell states, and N ≥ 3 for W states. In other

words, the matrix elements of the effective Hamiltonians are proportional to the number of mul-

timode cavities. By considering the following parameters for the QRS, ωcav = 2π × 13.12 GHz

[Bou+09], qubit frequency ωq = 0.8ωcav, light-matter coupling strength g = 0.6ωcav, they al-

low us to estimate |χ10| = 0.8188 and |χ21| = 1.235. In addition, we choose ωn1 = 0.25ν20,

ωn2 = 0.75ν20, Jn1 = 0.0075ν20, and Jn2 = 0.0053ν20. In this case, the state generation times

are about tS ≈ 25.10(8) [ns], tB ≈ 12.55(4) [ns], tW ≈ 8.369(4) [ns] for N = 3, and tW ≈ 6.28 [ns]

for N = 4, see Fig. 6.2.

6.5 Copies of density matrices

In the above section, we have demonstrated that our system can generate identical copies of pure

microwave photon states (N = 1, 2, 3). Here, we demonstrate that even including loss mechanisms

our protocol can still generate copies of density matrices with high fidelity. Since our proposal

includes an ultrastrongly coupled light-matter system, the dissipative dynamics will be described

by the master equation [BGB11]

ρ̇(t) = i[ρ(t),H] +

N∑
`=1

κ`D[b`]ρ(t) +

M∑
n=1

N∑
`=1

κ`D[c`]ρ(t)

+
∑

σ,σ>σ′

(Γσσ
′

κ + Γσσ
′

γ + Γσσ
′

γφ
)D[|σ, p〉〈σ′, p′|]ρ(t). (6.10)
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N = 1 N = 2 N = 3
F(ρω1

, ρω2
) 0.9898 0.9818 0.9832

FS 0.9892 - -
FB - 0.9945 -
FW - - 0.9904

Table 6.1: Fidelity quantum states. Summarized Fidelity values between the states ρω` obtained
through of the master Equation (6.11) with the fictitious states ρprobe and ρtensor for the case where
the QRS is coupled to n = {1, 2, 3} multi-modes cavity.

Here, H is the Hamiltonian of Eq. (6.2) and D[O]ρ = 1/2(2OρO†− ρO†O−O†Oρ) is the Liouvillian

operator. Furthermore, κn` stands for photon loss rate for each cavity mode. Γσσ
′

κ , Γσσ
′

γ and Γσσ
′

γφ
are

the dressed decay rates associated with the QRS, and they are defined as Γσσ
′

κ = κ
ωcav

νσσ′ |Xσσ′ |2,

Γσσ
′

γ = γ
ωq
νσσ′ |σxσσ′ |2 and Γσσ

′

γφ
=

γφ
ωq
νσσ′ |σzσσ′ |2, where κ, γ and γφ are the bare photon leakage

rate, relaxation rate, and depolarizing noise rates, respectively.

To study the robustness of our protocol under loss mechanisms, first, we will examine the gen-

eration of copies of density matrices for the cases of N = 1, 2, 3 multimode cavities. As mentioned

in the previous section, the whole system is initialized in the state |Ψ(0)〉 = |0,+〉⊗N
`,`′ |0`, 0`′〉.

Then, we let the system to evolve under Eq. (6.10) for three different times: tS = π/(2J 1
2 ),

tB = π/(4J 1
2 ), and tW = π/(6J 1

2 ), for N = 1, N = 2, and N = 3 multimode cavities, respec-

tively. Once the corresponding density matrix ρ(t) is obtained, we trace over the QRS and modes

ω2 (ω1) to obtain the reduced density matrix ρω1
(ρω2

) which contains only degrees of freedom

associated with the mode ω1 (ω2) distributed on different multimode cavities. Table 6.1, first row,

shows the fidelity between both reduced density matrices F(ρω1 , ρω2) = Tr(ρω1ρω2). These results

allow us to conclude that both quantum states are identical up to 99% fidelity for a single cavity,

and up to 98% fidelity for two and three cavities. Table 6.1 also shows the fidelities of generating

the states of Eqs. (6.9), that is, FS = Tr(ρ(tS)ρS), FB = Tr(ρ(tB)ρS), and FW = Tr(ρ(tW )ρS),

where ρ(t) have been numerically calculated from Eq. (6.10). In Fig. 6.3 we plot the reconstructed

density matrices for each case. The high fidelities of our protocol are mainly due to the fast state

generation times as compared with the loss rates. Our numerical calculations has been carried

out with realistic circuit QED parameters at temperature T = 15 mK [FD+16a]. For the QRS decay

rates we consider values κ = 2π × 0.10 MHz, γ = 2π × 15 MHz and γφ = 2π × 7.69 MHz and for

the cavities κn` = κ.
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Figure 6.4: Density matrix two-level systems. Real and imaginary part of the reduced density
matrix composed by the two qubits coupled to the field mode of frequency (a) ω1 and ω2. The
fidelity between the simulated state with the Bell state |ψ+〉 = (|eg〉 + |eg)〉/

√
2 is (a) F = 0.9960

and (b) F = 0.9976.

6.6 Entanglement Swapping Between Distant superconduct-

ing qubits

I this section, we transfer the entanglement generated into the field modes towards distant super-

conducting circuits. Let us consider a pair of two-level systems coupled at the end of each cavity.

Notice that as the cavities are λ/4 transmission line resonator, the superconducting qubits corre-

sponds to flux qubit to guarantee strong coupling with the resonators. In such a case, we describe

the system with the following Hamiltonian

HES = H+

2∑
`=1

ωnq`
2
σz` +

2∑
`=1

λ`σ
x
` (B†` + B`), (6.11)

where H is the Hamiltonian defined in Eq. (6.2). Moreover, σx` (σz` ) is the Pauli matrix describing

the two-level systems. B` is the extended cavity operators. Depending on whether the supercon-

ducting qubits coupled to the first or the second mode the operators can be B` = b`, c`, respectively.
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Finally, λ` is the coupling strength between the qubit and the field mode. The system dynamics is

described by the following master equation

ρ̇(t) = [Eq.(10)] +

N∑
`=1

γ`D[σ−` ]ρ(t) +

N∑
`=1

γφ`D[σz` ]ρ(t).

(6.12)

The last two terms on the master equation describe the loss mechanisms acting on the two-level

system, i.e., relaxation on the qubit at a rate γ and depolarising noise at rate γφ. The entanglement

swapping protocol is the following; we initialise the whole system in its ground state

ρ0 = |0,+〉〈0,+|
N⊗
`,`′

|0`, 0`′〉〈0`, 0`′ |
N⊗
`

|g`〉〈g`|, (6.13)

We dispersively couple the two-level systems with the field modes on the cavities (ω1,2
` � ωq`).

Next, we drive the QRS to prepare in the second excited state |2,+〉

ρ1 = |2,+〉〈2,+|
N⊗
`,`′

|0`, 0`′〉〈0`, 0`′ |
N⊗
`

|g`〉〈g`|, (6.14)

This state is the initial condition of our scheme. Afterwards, we let evolve the system under the

Hamiltonian in Eq. (6.11). As we dispersively coupled the qubits, they do not evolve. After a time

t = π/(2Jeff), the system evolves to

ρ2 = |0,+〉〈0,+|
N⊗
`

|Ψ+
ω`
〉〈Ψ+

ω`
|
N⊗
`

|g`〉〈g`|. (6.15)

The next step is to avoid the generated photons coming back to the QRS. In such a case, we

tune far-off resonance the QRS by changing the qubit frequency forming the QRS. We have done

this change through an external magnetic flux. Next, we put in resonance the external two-level

system with either field mode ω1,2
` . In such a case, for a time t = π/(2λ`), the system evolves to

ρ3 = |0,+〉〈0,−|
⊗
|Ψ+
ω`
〉〈Ψ+

ω`
|
⊗
|Ψ+
ω`′
〉〈Ψ+

ω`′
|. (6.16)

Here, |Ψω`〉 = (|g1e2〉+ |e1g2〉)/
√

2 is Bell state of the pair of qubits. Fig. (6.4) shows the real and

imaginary part of the reduced density matrix for the pair of qubits after performing the protocol.

As the figure shows, even though the loss mechanisms act on the system, the entanglement on
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the modes can be transferred to the qubits with high fidelity. For the two-level systems coupled to

the first mode (ω`1), the fidelity is F = 0.9960, and F = 0.9976 when the qubit is resonant with the

second mode (ω`2). This transfer occurs at the time scale of tS1 = 23.08 [ns] and tS2 = 16.32 [ns],

respectively.

6.7 Conclusion

In summary, we have shown the usefulness of the QRS to generate photons. Based on the

selection rules and the anharmonicity present of the QRS with an analogue to the phase matching

condition observed in the parametric frequency conversion. It is possible to generate two photons

starting to one excitation on the QRS. Depending on the number of multi-mode cavities in our

setup, we can create two uncorrelated photons states or like-copies of maximally entangled states

of photons (Bell or W states). In addition, we also demonstrate that by increasing the number of

cavities coupled to the QRS, the time of the distribution of the photons decrease. Open a possibility

to generate many-body microwave photonic state. Furthermore, by coupling an ancillary three-

level system to one cavity a controlled phase gate can be implemented. The application of this

gate on the system allow us to generate higher entangled state. Finally, we propose a possible

implementation using current technologies in superconducting circuits.
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Conclusion

In summary, this theses has addressed the problem concerning with energy transport mediated by

a hybrid light-matter system in the ultra-strong coupling regime, termed as quantum Rabi system

(QRS). The novel features exhibited by the energy spectrum of this system as anharmonicity of

its energy levels and internal selection rules imposed by the parity symmetry have permitted us

to develop protocols to generate and transport excitations. Moreover, we have also presented the

possible implementation of these protocols within the near-terms quantum architecture termed as

superconducting circuit and circuit quantum electrodynamics.

In chapter 5 we have developed a quantum protocol to perform high-fidelity transport of either

excitations or quantum states between a pair of two-level systems mediated by a QRS initially

prepared in a thermal state. The QRS is formed by two qubits, each of them built by a Josephson-

based circuit ultrastrongly coupled to a quantized field mode confined in a transmission line res-

onator. The additional two-level systems are composed by a transmon qubit coupled capacitively

at the edges of the resonator forming the QRS.

The quantum protocol consists of preparing the entire system in a thermal state. Due to the

system parameters, the thermal state of the whole system is represented by the QRS in a thermal

state factorised from the two-level systems, which are prepared in their ground state. Afterwards,

with a classical driving in one of the two-level system, it is possible to generate one excitation or an

arbitrary quantum state on it. Letting evolve the system, we show that even though the mediator

is in the thermal state, it is still possible to achieve high-fidelity state transfer. The efficiency of

this protocol relies on the selection rules presents on the QRS together with a specific resonance

condition on the two-level systems. We show that the main detrimental effect on the transport is

the working temperature instead of the losses mechanism acting on the entire system. In fact, in

the presence of them, the state transfer fidelity of an arbitrary quantum state on the Bloch sphere

reach 97.9% of efficiency.

In chapter 6 we have proposed a method to generate and transport quantum copies of mi-
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crowave photons in extended resonators mediated by a QRS. The QRS system is formed by

a Josephson-based electronic circuit ultratrongly coupled to a quantized field mode confined in

a transmission line resonator. The extended resonator are composed by transmission line res-

onators supporting two distinct modes.

The generation scheme considers specific resonance condition between the extended res-

onator and the QRS. Under this condition, the effective model governing the system dynamics

consists of two-photon transition mediated by the QRS, similar to the observed in the paramet-

ric down-conversion process. In such a case, depending on the number of coupled cavities, our

scheme can generate in a deterministic manner, a pair of uncorrelated photons states of differ-

ent frequency, a product of Bell and W states of spatially distant resonators. Moreover, we also

demonstrate improved generation times when increasing the number of multi-modes cavities. Fur-

thermore, we also show the generation of genuine multipartite-entanglement states between field

modes and ancillary two-level system.
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Appendices



Appendix A

Incoherent-mediator for quantum

state transfer in the ultrastrong

coupling regime: Effective

Hamiltonian

Here, we derive the effective Hamiltonian described in the main manuscript where a two-qubit

quantum Rabi system interacts with two additional qubits. We write the QRS Hamiltonian in its

diagonal form (~ = 1)

HQRS =

∞∑
j=0

νj |ψj〉〈ψj |, (A.1)

where νj is the jth eigenfrequency associated with the jth eigenstate |ψj〉. Also, we make use of

the completeness relation for eigenstates |ψj〉 to write the Hamiltonian (2) of the main manuscript

as

H =

∞∑
j=0

νj |ψj〉〈ψj |+
N=2∑
n=1

ωn
2
τzn +

N=2∑
n=1

∑
j,k

λnχjkτ
x
n |ψj〉〈ψk|, (A.2)

where we have defined χjk = 〈ψj |(a + a†)|ψk〉. To derive the effective qubit-qubit Hamiltonian,

we consider the Hamiltonian (A.2) in the interaction picture with respect to the free part H0 =

2



∑∞
j=0 νj |ψj〉〈ψj |+

∑N=2
n=1 (ωn/2)τzn. This leads to the Hamiltonian

H̄I(t) =
∑
n,j,k

λnχjk|ψj〉〈ψk|
(
τ+
n e

i∆n
kjt + τ−n e

−iµnkjt
)
, (A.3)

where the detuning parameters are defined as ∆n
kj = ωn−νkj and µnkj = ωn+νkj , abd νkj = νk−νj

are energy differences of the QRS. In addition, the effective Hamiltonian is given by

H̄eff(t) =
1

2
[H̄I(t),W (t)], (A.4)

where the function W (t) is defined by the following integral

W (t) = −i
∫ t

t0

H̄I(t
′)dt′. (A.5)

From the Hamiltonian (A.3) it is straightforward to obtain W (t) as

W (t) =

N=2∑
n=1

∑
j,k

(
λnχjkτ

−
n |ψj〉〈ψk|

(e−iµ
n
kjt − 1)

µnkj
− λnχjkτ+

n |ψj〉〈ψk|
(ei∆

n
kjt − 1)

∆n
kj

)
. (A.6)

Hence, the derivation of the effective Hamiltonian (A.4) depends only on the commutator between

terms (A.6) and (A.3). In this case, the most relevant commutator are given by

[
τ±n |ψj〉〈ψk|, τ±m|ψp〉〈ψq|

]
= τ±n τ

±
m(δkp|ψj〉〈ψq| − δjq|ψp〉〈ψk|) (A.7a)[

τ±n |ψj〉〈ψk|, τ∓m|ψp〉〈ψq|
]

= τ±n τ
∓
mδkp|ψj〉〈ψq| − τ∓mτ±n δjq|ψp〉〈ψk|. (A.7b)

Thus, the effective Hamiltonian reads

H̄eff(t) =
1

2

∑
n,n′

∑
j,k

λnλn′χjk ×
[

∑
p

χpj |ψp〉〈ψk|
(
ei∆

n
kjt(ei∆

n′
jpt − 1)τ+

n τ
+
n′

∆n′
jp

− ei∆
n
kjt(eiµ

n′
jpt − 1)τ−n′τ

+
n

µn
′
jp

+
e−iµ

n
kjt(ei∆

n′
jpt − 1)τ+

n′τ
−
n

∆n′
jp

− e−iµ
n
kjt(e−iµ

n′
jpt − 1)τ−n τ

−
n′

µn
′
jp

)

−
∑
q

χkq|ψj〉〈ψq|
(
ei∆

n
kjt(ei∆

n′
qkt− 1)τ+

n τ
+
n′

∆n′
qk

− ei∆
n
kjt(eiµ

n′
qkt − 1)τ+

n′τ
−
n

µn
′
qk

+
e−iµ

n
kjt(ei∆

n
qkt − 1)τ−n τ

+
n′

∆n′
qk

− e−iµ
n
kjt(e−iµ

n′
qkt − 1)τ−n τ

−
n′

µn
′
qk

)]
. (A.8)
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It is noteworthy that in our system, the frequency terms µnkj , ∆n
kj and νk,k′ are larger than the effec-

tive coupling terms λnλn′χjkχpj/∆n′

kj and λnλn′χjkχpj/µn
′

kj . Therefore, we can be safely neglect

these fast oscillating terms in a secular approximation. In this case, the effective Hamiltonian in

the Schrödinger picture reads

Heff = H0 +
1

2

∑
n,n′

∑
j,k

λnλn′ |χjk|2(|ψk〉〈ψk| − |ψj〉〈ψj |)×(
τ+
n τ

+
n′

∆n′
jk

− τ+
n τ
−
n′

µn
′
jk

+
τ−n τ

+
n′

∆n′
jk

− τ−n τ
−
n′

µn
′
jk

)
. (A.9)

In addition, as the effective Hamiltonian contains terms of the form τ±n τ
±
n′ , that are zero when

n = n′, we can split the sum into two parts, one for equal indexes n and n′, and one for the

opposite case. In this situation, we obtain an effective qubit-qubit interaction between the leftmost

and rightmost qubits

Heff = H0 +
1

2

∑
j,k

|χjk|2(|ψk〉〈ψk| − |ψj〉〈ψj |)
[∑

n

λ2
n

(
τ−n τ

+
n′

∆n′
jk

− τ+
n τ
−
n′

µn
′
jk

)]

+
1

2

∑
j,k

|χjk|2(|ψk〉〈ψk| − |ψj〉〈ψj |)
[∑
n,n′

λnλn′

(
1

∆n′
jk

+
1

∆n′
jk

− 1

µn
′
jk

− 1

µn
′
jk

)
τxnτ

x
n′

]
.

(A.10)

Finally, if we truncate to the two lowest energy levels of the QRS, we obtain the effective Hamilto-

nian

Heff = H0 +
1

2
|χ10|2Zp ⊗ S12, (A.11)

where |χ10|2 = |〈ψ0|(a† + a)|ψ1〉|2, Zp = |ψ1〉〈ψ1| − |ψ0〉〈ψ0|, S12 = λ1λ2(1/µ1
10 + 1/µ2

10 − 1/∆1
10 −

1/∆2
10)τx1 τ

x
2 + 2

∑2
n=1 λ

2
n(τ+

n τ
−
n /∆

n
10 − τ−n τ

+
n /µ

n
10), and τ±n = (τxn ± iτyn)/2. The detunings are

defined as ∆n
10 = ωn − ν10 and µn10 = ωn + ν10, where ωn corresponds to the nth qubit frequency

that interacts with the QRS.
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Appendix B

Parity-assisted Generation of

Nonclassical States of Light in

Superconducting Circuits: Effective

Hamiltonian

Here, we derive the effective Hamiltonian given in Eq. (6.8) in the chapter 6. We have done

the derivation by considering the dispersive treatment beyond of RWA [Kya+17; Zue+09]. Let us

consider the Hamiltonian given in the Eq (1) in the main manuscript

H = HQRS +Hc +HI , (B.1)

Hc =

N∑
`=1

(ω`1b
†
`b` + ω`2c

†
`c`), (B.2)

HI =

N∑
`=1

[
J`1(b†` + b`) + J`2(c†` + c`)

]
(a+ a†), (B.3)

which describe the interaction between a QRS with N multi-modes cavities, each of them support-

ing M = 2 modes. To obtain the effective Hamiltonian, first, we express the QRS Hamiltonian in

its diagonal form

HQRS =

∞∑
j,p

νj |j, p〉〈j, p|, (B.4)
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where νj is the jth eigenfrequency from the jth eigenstate |j, p〉 with j is increasing in energy, and

p is the parity of the state. Now we write the interacting term of the Hamiltonian in Eq. (B.1) in the

QRS basis leading to

HI =

N∑
`=1

∑
j,k,p,q

(J`1χjkb
†
`|j, p〉〈k, q|+ J`2χjkc

†
`|j, p〉〈k, q|) + h.c, (B.5)

we are defined χjk as the matrix element of the annihilation operator of the QRS χjk = 〈j, p|a|k, q〉.

Now, we write the Hamiltonian (B.5) in the interaction picture with respect to the free Hamiltonian

H0 defined as H0 = HQRS +Hc. The interacting Hamiltonian reads

H̄I =

N∑
`=1

∑
j,k,p,q

(
J`1χjke

−i∆`1
kjtb†`|j, p〉〈k, q|+ J`2χkje

−i∆`2
kjtc†`|j, p〉〈k, q|

)
+ h.c. (B.6)

Here, we have defined the detuning between the QRS with and the `th field mode as ∆`n
kj =

ω`n − νkj . The effective Hamiltonian is given by

H̄`eff(t) =
1

2

[
H̄I(t),W(t)

]
. (B.7)

The functionW(t) is defined as

W(t) = −i
∫ t

0

dt′H̄I(t′) (B.8)

W(t) =

N∑
`=1

∑
j,k,p,q

[
J`1χkj(e

−i∆`1
kjt − 1)

∆`1
kj

b†`|j, p〉〈k, q|+
J`2χkj(e

i∆`2
kjt − 1)

∆`2
kj

c†`|j, p〉〈k, q|
]

+ h.c.

(B.9)

Notice that, form Ref [SWF17]. For Hamiltonians with the following structure

H̄I(t) =
∑
m

[
Ômei∆mt + Ô†me−i∆mt

]
, (B.10)

the effective Hamiltonian is given by the relation

H̄`eff(t) =
∑
m

1

∆m

[
Ô, Ô†

]
, (B.11)
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Thus, the effective Hamiltonian in the Schŕ’odinger picture reads

H`eff = H0 +
1

2

N∑
`,`′=1

J`1J
`′

2 (b†`c`′ + b`c
†
`′ − I)A`′,n′ +

1

2

N∑
`,`′=1

J`1J
`′

2 b
†
`c
†
`′B`′,n′ + h.c, (B.12)

where the operators A`′,n′ and B`′,n′ are associated with the QRS system and they are defined as

A`′,n′ =
∑
σ,ρ

χ2
σρ

∆`′n′
σρ

[
|ρ, p〉〈ρ, p| − |σ, q〉〈σ, q|

]
(B.13)

B`′,n′ =
∑
σ,k,ρ

χkσχρσ
∆`′n′
σρ

|ρ, p〉〈k, q| −
∑
σ,j,ρ

χjρχρσ
∆`′n′
σρ

|j, p〉〈σ, q| (B.14)

In the three level approximation of the QRS, these operators are given by

A`′n′ = Ω`n10|0,+〉〈0,+|+ Ω`n21|2,+〉〈2,+|, (B.15)

B`′n′ = J n,n
′

`,`′ |0,+〉〈2,+|. (B.16)

The effectives coupling strength Ω`njk and J n,n
′

`,`′ are defines as

Ω`njk =
2νjk[χkj ]

2

(νjk)2 − (ωn` )2
, (B.17)

J `,`
′

n,n′ =
J`nJ

`′

n′χ01χ21

2

[
1

∆`′n′
10

− 1

∆`′n′
21

]
. (B.18)

For system parameters ωn1 = 0.25ν20, ωn2 = 0.75ν20, Jn1 = 0.0075ν20, and Jn2 = 0.0053ν20 ,

we obtain that Ω`njk � J n,n
′

`,`′ (J n,n
′

`,`′ is at least two order of magnitude larger than Ω`njk). Thus,

the frequency of their respective process are fast oscillating and can be neglected in a secular

approximation. Leading to the effective Hamiltonian

H`eff = HQRS +Hc +

N∑
`,`′=1

J `′` (b†`c
†
`′S− + b`c`′S+), (B.19)

which describes simultaneous two-photon processes in both cavities. Here, S+ = |2,+〉〈0,+|

corresponds to the ladder operator of the QRS in the effective two-level basis. For the cases,

7



N = {1, 2, 3} the effective Hamiltonians read

H1
eff = J 1

2

[
b†1c
†
1S− + b1c2S+

]
. (B.20a)

H2
eff = J 1

2

[
b†1c
†
1 + b†2c

†
2 + b†1c

†
2 + b†2c

†
1

]
S− + H.c. (B.20b)

H3
eff = J 1

2

[
b†1c
†
1 + b†2c

†
2 + b†3c

†
3 + b†1c

†
2 + b†1c

†
3 + b†2c

†
1 + b†2c

†
3 + b†3c

†
1 + b†3c

†
2

]
S− + H.c.(B.20c)
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